Applied Statistics and Probability for Engineers, 6th Edition

Published by Wiley
ISBN 10: 1118539710
ISBN 13: 978-1-11853-971-2

Chapter 3 - Section 3-6 - Binomial Distribution - Exercises - Page 86: 3-112

Answer

a) 0.22 b)0.028 c) 0.25

Work Step by Step

Let $X$ be the random variable of number of patients that leave without being seen by a physician in the hospital 4 . $X$ has the binomial distribution with parameters $n=5, p$ Calculate the parameter $p$ directly from the table given in the example $2-8:$ $$ p=\frac{242}{4329}=0.0559 $$ The probability mass function of $X$ is given by: $$ \mathbb{P}(X=x)=\left(\begin{array}{l} 5 \\ x \end{array}\right) p^{x} \times(1-p)^{5-x}, x=0,1, \ldots, 5 $$ Calculate using this formula: $$ \begin{array}{l} \mathbb{P}(X=1)=0.22 \\ \mathbb{P}(X \geq 2)=1-\mathbb{P}(X=0)-\mathbb{P}(X=1)=0.028 \\ \mathbb{P}(X \geq 1)=1-\mathbb{P}(X=0)=0.25 \end{array} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.