Applied Statistics and Probability for Engineers, 6th Edition

Published by Wiley
ISBN 10: 1118539710
ISBN 13: 978-1-11853-971-2

Chapter 3 - Section 3-6 - Binomial Distribution - Exercises - Page 86: 3-114

Answer

a) $0.155$ b) $8\times 10^{-5}$ c)$6.93\times 10^{-4}$ d) $10.8$

Work Step by Step

Let $X$ be the random variable of number of reactions. $X$ has the binomial distribution with parameters $n=20, p$, We can calculate the parameter $p$ directly from the table given in the exercise $3-32:$ $$ p=\frac{48+60}{200}=0.54 $$ The probability mass function of $X$ is given by: $$ \mathbb{P}(X=x)=\left(\begin{array}{l} 20 \\ x \end{array}\right) 0.54^{x} \times(0.46)^{20-x}, x=0,1, \ldots, 20 $$ Calculate using this formula: $$ \begin{array}{l} \mathbb{P}(X=12)=0.155 \\ \mathbb{P}(X \geq 19)=\mathbb{P}(X=19)+\mathbb{P}(X=20)=0.00008=8\times 10^{-5}\\ \mathbb{P}(X \geq 18)=\mathbb{P}(X=18)+\mathbb{P}(X=19)+\mathbb{P}(X=20)=6.93\times 10^{-4}\\ \mathbb{E}(X )=np=20\times 0.54=10.8 \end{array} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.