An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 3 Random Variables - 3.12 Moment-Generating Functions - Questions - Page 209: 8

Answer

See explanation

Work Step by Step

$\begin{align*} M_Y(t) &= E(e^{Yt}) \\ &= \int_{-\infty}^\infty e^{yt}f_Y(y)\ dy \\ &= \int_0^\infty e^{yt}f_Y(y)\ dy & \text{[ since }\ f_Y(y) = 0,\ y\lt 0\ ] \\ &= \int_0^\infty e^{yt}\cdot\left(ye^{-y}\right)\ dy & \text{[ since }\ f_Y(y) = ye^{-y},\ y\ge 0\ ] \\ &= \int_0^\infty ye^{-y+yt}\ dy \\ &= \lim_{L\ \to\ \infty} \int_0^L ye^{-y(1-t)}\ dy \\ & \\ & \qquad\text{Use integration by parts:} \\ & \qquad \begin{array}{l|l} u = y & dv = e^{-y(1-t)} \\ \hline du = dy & \displaystyle v = \frac{e^{-y(1-t)}}{-(1-t)} \end{array} \\ & \\ &= \lim_{L\ \to\ \infty} \left( ye^{-y(1-t)}\ \biggr\vert_0^L - \int_0^L \frac{e^{-y(1-t)}}{-(1-t)}\ dy \right)\\ &= \lim_{L\ \to\ \infty} \left( ye^{-y(1-t)}\ \biggr\vert_0^L - \frac{e^{-y(1-t)}}{(1-t)^2}\ \biggr\vert_0^L \right)\\ &= \lim_{L\ \to\ \infty} \left[\left( \frac{L}{e^{L(1-t)}} - 0 \right) - \left(\frac{e^{-L(1-t)}}{(1-t)^2} - \frac{1}{(1-t)^2} \right)\right] \\ & \\ & \quad\quad {\small t<1,} \\ & \quad\quad \small \begin{array}{c|c} \lim\limits_{L\ \to\ \infty} \frac{L}{e^{L(1-t)}} = \frac{\infty}{\infty} & \lim\limits_{L\ \to\ \infty} \frac{e^{-L(1-t)}}{(1-t)^2} \\ \stackrel{\text{L.H.}}{=} \lim\limits_{L\ \to\ \infty} \frac{1}{(1-t)e^{L(1-t)}} = \frac{1}{e^\infty} & = \frac{e^{-\infty}}{(1-t)^2} \\ =\frac{1}{\infty}= 0 & =0 \end{array} \\ & \\ &= \left( 0 -0\right) - \left( 0 - \frac{1}{(1-t)^2}\right) \\ \color{blue}{M_X(t)}\ &\color{blue}{= \frac{1}{(1-t)^2},\ t <1} \end{align*}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.