An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 3 Random Variables - 3.12 Moment-Generating Functions - Questions - Page 209: 3

Answer

$\displaystyle\color{blue}{\left(\frac{2+e^3}{3}\right)^{10} \;\approx\; 467,\!591,\!999.417}$

Work Step by Step

$\begin{align*} E(e^{3X}) &= E(e^{Xt})\Biggr\vert_{t=3} \\ &= M_X(t)\Biggr\vert_{t=3} & \text{[ Def. of mgf ]}\\ &= M_X(3) \\ &= \left(\frac{2}{3} + \frac{1}{3}e^3\right)^{10} & \text{[ since }\ X\sim \text{Binomial}(10,{\scriptsize\frac{1}{3}}), \\ & & \text{see Example 3.12.2, p. 208 ]} \\ \color{blue}{E(e^{3X})}\ &\color{blue}{= \left(\frac{2+e^3}{3}\right)^{10} \;\approx\; 467,591,999.417} \end{align*}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.