An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 3 Random Variables - 3.12 Moment-Generating Functions - Questions - Page 209: 4

Answer

$\displaystyle \color{blue}{\frac{\frac{1}{4}}{1 - \frac{3}{4}e^t}}$

Work Step by Step

From Example 3.12.1 (p. 206), we see that the given pdf of $X$ is geometric with a probability of success per trial $p=\frac{1}{4}.$ Thus, the mgf of $X$ is immediately obtained to be $\displaystyle \color{blue}{M_X(t) = \frac{\frac{1}{4}}{1 - \frac{3}{4}e^t}}$ based on the result of this example (see p. 207). Alternatively, we can use the definition of the mgf and the given pdf to obtain: $\begin{align*} M_X(t) &= E(e^{Xt}) \\ &= \displaystyle \sum_{k=0}^\infty e^{kt}p_X(k) \\ &= \sum_{k=0}^\infty e^{kt}\left(\frac{3}{4}\right)^k\left(\frac{1}{4}\right) \\ &= \sum_{k=0}^\infty (e^t)^k\left(\frac{3}{4}\right)^k\left(\frac{1}{4}\right) \\ &= \sum_{k=0}^\infty \left(\frac{3e^t}{4}\right)^k\left(\frac{1}{4}\right) \\ &= \left(\frac{1}{4}\right) \underbrace{\sum_{k=0}^\infty \left(\frac{3e^t}{4}\right)^k}_{S_\infty\ \text{of G.P.},\ t_1\;=\;1,\ r\;=\;\frac{3e^t}{4}} \\ &= \left(\frac{1}{4}\right) \overbrace{\frac{1}{1-\frac{3e^t}{4}}}^{S_\infty = \frac{t_1}{1-r}} \\ \color{blue}{M_X(t)}\ &\color{blue}{= \frac{\frac{1}{4}}{1 - \frac{3}{4}e^t}} \end{align*}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.