An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 3 Random Variables - 3.12 Moment-Generating Functions - Questions - Page 209: 5

Answer

(a) Normal, $\mu=0$, $\sigma^2=12$ (b) Exponential, $\lambda=2$ (c) Binomial, $n=4$, $p=\frac{1}{2}$ (d) Geometric, $p=0.3$

Work Step by Step

(a) $\begin{align*} M_Y(t) &= e^{6t^2} \\ &= e^{0t + \frac{1}{2}\cdot 12t^2} \\ M_Y(t) &= e^{\mu t + \frac{1}{2}\cdot\sigma^2t^2}, \end{align*}$ where $\mu = 0$ and $\sigma^2=12$. The mgf of $Y$ is that of a normal random variable with mean $\mu=0$ and variance $\sigma^2=12$ (see Example 3.12.4, p. 208). Thus, $Y\sim N(\mu=0,\sigma^2=12)$ so that the pdf of $Y$ is Normal with mean $\mu=0$ and variance $\sigma^2=12$. (b) $\begin{align*} M_Y(t) &= 2/(2-t) \\ M_Y(t) &= \frac{\lambda}{\lambda-t}, \end{align*}$ where $\lambda =2$. The mgf of $Y$ is that of an exponential random variable with parameter $\lambda = 2$ (see Example 3.12.3, p. 208). Thus, $Y\sim \text{Exponential}(\lambda = 2)$ so that the pdf of $Y$ is Exponential with parameter $\lambda=2$. (c) $\begin{align*} M_Y(t) &= \left(\frac{1}{2} + \frac{1}{2}e^t\right)^4 \\ &= \left(\left(1-\frac{1}{2}\right) + \frac{1}{2}e^t\right)^4 \\ M_Y(t) &= \left((1-p) + pe^t\right)^n, \end{align*}$ where $n=4$ and $p=\frac{1}{2}$. The mgf of $Y$ is that of a binomial random variable with parameters: number of trials $n=4$ and probability of success $p=\frac{1}{2}$ (see Example 3.12.2, p. 207). Thus, $Y\sim \text{Binomial}(n=4,p=\frac{1}{2})$ so that the pdf of $Y$ is a Binomial distribution with parameters $n=4$ and $p=\frac{1}{2}$. (d) $\begin{align*} M_Y(t) &= \dfrac{0.3e^t}{1-0.7e^t} \\ &= \dfrac{0.3e^t}{1-(1-0.3)e^t} \\ M_Y(t) &= \dfrac{pe^t}{1- (1-p)e^t} \\ \end{align*}$ where $p=0.3$. The mgf of $Y$ is that of a geometric random variable wherein each trial has a probability of success $p=0.3$ (see Example 3.12.1, p. 207). Thus, $Y\sim \text{Geometric}(p=0.3)$ so that the pdf of $Y$ is Geometric with a probability of success $p=0.3$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.