Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Review - Test - Page 580: 22

Answer

$\frac{\sqrt {1-x^2}-xy}{\sqrt {1+y^2}}$

Work Step by Step

Step 1. Let $u=cos^{-1}x, v=tan^{-1}y$, we have $cos(u)=x, tan(v)=y$ and $sin(u)=\sqrt {1-x^2}, sin(v)=\frac{y}{\sqrt {1+y^2}}, cos(v)=\frac{1}{\sqrt {1+y^2}}$ Step 2. Use the Subtraction Formula, we have $sin(cos^{-1}x-tan^{-1}y) =sin(u-v)=sin(u)cos(v)-cos(u)sin(v)=\sqrt {1-x^2}\times\frac{1}{\sqrt {1+y^2}}-x\frac{y}{\sqrt {1+y^2}} =\frac{\sqrt {1-x^2}-xy}{\sqrt {1+y^2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.