Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Review - Test - Page 580: 2

Answer

$\frac{\tan x}{1-\cos x}=\csc x(1+\sec x)$

Work Step by Step

Start with the right side: $\csc x(1+\sec x)$ Multiply top and bottom by $1-\cos x$: $=\frac{\csc x(1+\sec x)(1-\cos x)}{1-\cos x}$ Multiply $1+\sec x$ by $1-\cos x$ and simplify: $=\frac{\csc x(1-\cos x+\sec x-\sec x\cos x)}{1-\cos x}$ $=\frac{\csc x(1-\cos x+\sec x-1)}{1-\cos x}$ $=\frac{\csc x(\sec x-\cos x)}{1-\cos x}$ $=\frac{\csc x\sec x-\csc x\cos x}{1-\cos x}$ Write everything in terms of sine and cosine and simplify: $=\frac{\frac{1}{\sin x}*\frac{1}{\cos x}-\frac{1}{\sin x}*\cos x}{1-\cos x}$ $=\frac{\frac{1}{\sin x\cos x}-\frac{\cos x}{\sin x}}{1-\cos x}$ $=\frac{\frac{1}{\sin x\cos x}-\frac{\cos x}{\sin x}*\frac{\cos x}{\cos x}}{1-\cos x}$ $=\frac{\frac{1}{\sin x\cos x}-\frac{\cos^2 x}{\sin x\cos x}}{1-\cos x}$ $=\frac{\frac{1-\cos^2 x}{\sin x\cos x}}{1-\cos x}$ Simplify using the identity $1-\cos^2 x=\sin^2 x$: $=\frac{\frac{\sin^2 x}{\sin x\cos x}}{1-\cos x}$ $=\frac{\frac{\sin x}{\cos x}}{1-\cos x}$ $=\frac{\tan x}{1-\cos x}$ Since this equals the left side, the identity has been proven.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.