Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 5 - Section 5.2 - Trigonometric Functions of Real Numbers - 5.2 Exercises - Page 418: 82

Answer

175, 150.4, 100, 38.6, 100, 150.3, 58.8

Work Step by Step

Given $H(t) = 100 + 75e^{-\frac{t}{20}} \cos (\frac {\pi t}{4})$ The question asks for I(t) for the values of t = 0, 1, 2, 4, 6, 8, 12 Thus substitute those t values and find y(t) $H(t) = 100 + 75e^{-\frac{0}{20}} \cos (\frac {\pi 0}{4}) = 100 + 75 (1)(1) = 175$ $H(t) = 100 + 75e^{-\frac{1}{20}} \cos (\frac {\pi 1}{4}) = 150.4$ $H(t) = 100 + 75e^{-\frac{2}{20}} \cos (\frac {\pi 2}{4}) = 100 + 75e^{-\frac{2}{20}} (0) = 100$ $H(t) = 100 + 75e^{-\frac{4}{20}} \cos (\frac {\pi 4}{4}) = 38.6$ $H(t) = 100 + 75e^{-\frac{6}{20}} \cos (\frac {\pi 6}{4}) = 100 + 0 = 100$ $H(t) = 100 + 75e^{-\frac{8}{20}} \cos (\frac {\pi 8}{4}) = 150.3$ $H(t) = 100 + 75e^{-\frac{12}{20}} \cos (\frac {\pi 12}{4}) = 58.8$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.