Answer
175, 150.4, 100, 38.6, 100, 150.3, 58.8
Work Step by Step
Given $H(t) = 100 + 75e^{-\frac{t}{20}} \cos (\frac {\pi t}{4})$
The question asks for I(t) for the values of t = 0, 1, 2, 4, 6, 8, 12
Thus substitute those t values and find y(t)
$H(t) = 100 + 75e^{-\frac{0}{20}} \cos (\frac {\pi 0}{4}) = 100 + 75 (1)(1) = 175$
$H(t) = 100 + 75e^{-\frac{1}{20}} \cos (\frac {\pi 1}{4}) = 150.4$
$H(t) = 100 + 75e^{-\frac{2}{20}} \cos (\frac {\pi 2}{4}) = 100 + 75e^{-\frac{2}{20}} (0) = 100$
$H(t) = 100 + 75e^{-\frac{4}{20}} \cos (\frac {\pi 4}{4}) = 38.6$
$H(t) = 100 + 75e^{-\frac{6}{20}} \cos (\frac {\pi 6}{4}) = 100 + 0 = 100$
$H(t) = 100 + 75e^{-\frac{8}{20}} \cos (\frac {\pi 8}{4}) = 150.3$
$H(t) = 100 + 75e^{-\frac{12}{20}} \cos (\frac {\pi 12}{4}) = 58.8$