Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 13 - Section 13.3 - Tangent Lines and Derivatives - 13.3 Exercises - Page 922: 25

Answer

$F'(4)=-\dfrac{1}{16}$

Work Step by Step

$F(x)=\dfrac{1}{\sqrt{x}},$ at $4$ The derivative of a function $F$ at $a$ is $F'(a)=\lim_{h\to0}\dfrac{F(a+h)-F(a)}{h}$ In this case, $a=4$ Find $F(a+h)$ by substituting $x$ by $4+h$ in $F(x)$ and simplifying: $F(4+h)=\dfrac{1}{\sqrt{4+h}}$ Find $F(a)$ by substituting $x$ by $4$ in $F(x)$ and evaluating: $F(4)=\dfrac{1}{\sqrt{4}}=\dfrac{1}{2}$ Substitute the known values into the formula that gives $F'(a)$ and evaluate: $F'(a)=\lim_{h\to0}\dfrac{\dfrac{1}{\sqrt{4+h}}-\dfrac{1}{2}}{h}=\lim_{h\to0}\dfrac{\dfrac{2-\sqrt{4+h}}{2\sqrt{4+h}}}{h}=...$ $...=\lim_{h\to0}\dfrac{2-\sqrt{4+h}}{2h\sqrt{4+h}}\cdot\dfrac{2+\sqrt{4+h}}{2+\sqrt{4+h}}=...$ $...=\lim_{h\to0}\dfrac{2^{2}-(\sqrt{4+h})^{2}}{(2h\sqrt{4+h})(2+\sqrt{4+h})}=...$ $...=\lim_{h\to0}\dfrac{4-4-h}{(2h\sqrt{4+h})(2+\sqrt{4+h})}=...$ $...=\lim_{h\to0}\dfrac{-h}{(2h\sqrt{4+h})(2+\sqrt{4+h})}=...$ $...=\lim_{h\to0}\dfrac{-1}{(2\sqrt{4+h})(2+\sqrt{4+h})}=...$ $...=\dfrac{-1}{(2\sqrt{4+0})(2+\sqrt{4+0})}=\dfrac{-1}{(4)(2+2)}=-\dfrac{1}{16}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.