Answer
No solution.
Work Step by Step
Step 1. Set up the augmented matrix of the system of equations:
$\begin{array} \\A=\\ \end{array}
\begin{bmatrix} 1&-1&1&2\\ 1&1&3&6\\ 0&2&3&5 \end{bmatrix}
\begin{array} \\ \\R_2-R_1\to R_2\\ \\ \end{array}$
Step 2. Do the row operations indicated on the right side of the matrix:
$\begin{array} \\A=\\ \end{array}
\begin{bmatrix} 1&-1&1&2\\ 0&2&2&4\\ 0&2&3&5 \end{bmatrix}
\begin{array} \\ \\ \\ \\ \end{array}$
Step 3. Take the difference of the last two rows to get $0=1$ indicating that there is no solution to the system.