Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 3 - Polynomial and Rational Functions - Section 3.6 Polynomial and Rational Inequalities - 3.6 Assess Your Understanding - Page 264: 57

Answer

$(-\infty,-\frac{2}{3})\cup(0,\frac{3}{2})$.

Work Step by Step

Step 1. Rewrite the inequality $6x-5-\frac{6}{x}\lt0 \Longrightarrow \frac{(2x-3)(3x+2)}{x}\lt0$, identify boundary points as $x=-\frac{2}{3},0,\frac{3}{2}$. Step 2. Form intervals $(-\infty,-\frac{2}{3}),(-\frac{2}{3},0),(0,\frac{3}{2}),(\frac{3}{2},\infty)$. Step 3. Choose test values for each interval $x=-1,-1/3,1,2$. Step 4. Test the inequality to get results: $True,\ False,\ True,\ False$ Step 5. We have the solution $(-\infty,-\frac{2}{3})\cup(0,\frac{3}{2})$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.