Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 3 - Polynomial and Rational Functions - Section 3.6 Polynomial and Rational Inequalities - 3.6 Assess Your Understanding - Page 264: 48

Answer

$ (-1,\frac{2}{3})\cup(2,\infty)$.

Work Step by Step

Step 1. For $\frac{(2-x)^3(3x-2)}{(x+1)(x^2-x+1)}\lt0$, identify boundary points as $x=-1,\frac{2}{3},2$. Step 2. Form intervals $(-\infty,-1),(-1,\frac{2}{3}),(\frac{2}{3},2),(2,\infty)$. Step 3. Choose test values for each interval $x=-2,0,1,3$. Step 4. Test the inequality to get results: $False,\ True,\ False,\ True$ Step 5. We have the solution $ (-1,\frac{2}{3})\cup(2,\infty)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.