Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 3 - Polynomial and Rational Functions - Chapter Test - Page 270: 2

Answer

(a) $n=3$. (b) $\pm1,\pm3,\pm5,\pm15,\pm\frac{1}{2},\pm\frac{3}{2},\pm\frac{5}{2},\pm\frac{15}{2}$. (c) $-5,-\frac{1}{2},3$, thus $g(x)=(x-3)(x+5)(2x+1)$. (d) $x=-5,-\frac{1}{2},3$, $f(0)=-15$. (e) $x=-5,-\frac{1}{2},3$ crosses the x-axis. (f) $y=2x^3$ (g) See graph.

Work Step by Step

(a) Given $g(x)=2x^3+5x^2-28x-15$, we can determine the maximum number of real zeros as $n=3$. (b) We can list the potential rational zeros $\pm1,\pm3,\pm5,\pm15,\pm\frac{1}{2},\pm\frac{3}{2},\pm\frac{5}{2},\pm\frac{15}{2}$. (c) Use synthetic division, we can find a zero $x=3$ and quotient $2x^2+11x+5=(x+5)(2x+1)$ which gives two more zeros $x=-5,-\frac{1}{2}$, thus $g(x)=(x-3)(x+5)(2x+1)$. (d) We can find the x-intercepts $x=-5,-\frac{1}{2},3$, y-intercepts $f(0)=-15$. (e) At $x=-5,-\frac{1}{2},3$ the graph crosses the x-axis. (f) The power function that the graph resembles is $y=2x^3$ for end behaviors. (g) See graph.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.