Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 9 - Systems and Matrices - 9.3 Determinant Solution of Linear Systems - 9.3 Exercises - Page 888: 109

Answer

$$\left\{ {\left( { - 1,2} \right)} \right\}$$

Work Step by Step

$$\eqalign{ & ax + by = c \cr & dx + ey = f \cr & {\rm{Given \,the\, system}} \cr & \left\{ {\matrix{ {{a_1}x + {b_1}y = {c_1}} \cr {{a_2}x + {b_2}y = {c_2}} \cr } } \right. \cr & D = \left| {\matrix{ {{a_1}} & {{b_1}} \cr {{a_2}} & {{b_2}} \cr } } \right|,\,\,\,{D_x} = \left| {\matrix{ {{c_1}} & {{b_1}} \cr {{c_2}} & {{b_2}} \cr } } \right|,\,\,{D_y} = \left| {\matrix{ {{a_1}} & {{c_1}} \cr {{a_2}} & {{c_2}} \cr } } \right| \cr & {\rm{First\, find \,}}D,{\rm{ If }}D \ne 0,\,{\rm{ then\, find\, }}{D_x}{\rm{ and }}{D_y} \cr & D = \left| {\matrix{ a & b \cr d & e \cr } } \right| = ae - bd \cr & {D_x} = \left| {\matrix{ c & b \cr f & e \cr } } \right| = ce - bf \cr & {D_y} = \left| {\matrix{ a & c \cr d & f \cr } } \right| = af - cd \cr & {\rm{Using \,the \,Cramer's\, rule}} \cr & x = {{{D_x}} \over D} = {{ce - bf} \over {ae - bd}} \cr & \,\,y = {{{D_y}} \over D} = {{af - cd} \over {ae - bd}} \cr & {\rm{Let\, }}a = 1,\,\,b = 2,\;c = 3,\,\,d = 4,\,\,\,e = 5,\,\,f = 6 \cr & x = {{15 - 12} \over {5 - 8}} = - 1 \cr & y = {{6 - 12} \over {5 - 8}} = 2 \cr & {\rm{The \,solution\, set\, is}} \cr & \left\{ {\left( { - 1,2} \right)} \right\} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.