Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 9 - Systems and Matrices - 9.3 Determinant Solution of Linear Systems - 9.3 Exercises - Page 888: 105

Answer

$$\left\{ {\left( { - a - b\,\,,{b^2} + ab + {a^2}} \right)} \right\}$$

Work Step by Step

$$\eqalign{ & bx + y = {a^2} \cr & ax + y = {b^2} \cr & {\rm{Given\, the\, system}} \cr & \left\{ {\matrix{ {{a_1}x + {b_1}y = {c_1}} \cr {{a_2}x + {b_2}y = {c_2}} \cr } } \right. \cr & D = \left| {\matrix{ {{a_1}} & {{b_1}} \cr {{a_2}} & {{b_2}} \cr } } \right|,\,\,\,{D_x} = \left| {\matrix{ {{c_1}} & {{b_1}} \cr {{c_2}} & {{b_2}} \cr } } \right|,\,\,{D_y} = \left| {\matrix{ {{a_1}} & {{c_1}} \cr {{a_2}} & {{c_2}} \cr } } \right| \cr & {\rm{First\, find\, }}D,{\rm{ If }}D \ne 0,\,{\rm{ then \,find\, }}{D_x\,}{\rm{ and }}{\,D_y\,} \cr & D = \left| {\matrix{ b & 1 \cr a & 1 \cr } } \right| = b - a \cr & {D_x} = \left| {\matrix{ {{a^2}} & 1 \cr {{b^2}} & 1 \cr } } \right| = {a^2} - {b^2} \cr & {D_y} = \left| {\matrix{ b & {{a^2}} \cr a & {{b^2}} \cr } } \right| = {b^3} - {a^3} \cr & {\rm{Using\, the\, Cramer's\, rule}} \cr & x = {{{D_x}} \over D} = {{{a^2} - {b^2}} \over {b - a}} = {{\left( {a + b} \right)\left( {a - b} \right)} \over {b - a}} = - \left( {a + b} \right)\, = - a - b\,\, \cr & \,\,y = {{{D_y}} \over D} = {{{b^3} - {a^3}} \over {b - a}} = {{\left( {b - a} \right)\left( {{b^2} + ab + {a^2}} \right)} \over {b - a}} = {b^2} + ab + {a^2} \cr & {\rm{The\, solution\, set\, is}} \cr & \left\{ {\left( { - a - b\,\,,{b^2} + ab + {a^2}} \right)} \right\} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.