Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 9 - Systems and Matrices - 9.3 Determinant Solution of Linear Systems - 9.3 Exercises - Page 888: 106

Answer

$$\left\{ {\left( { - {1 \over a}\,\,,{{a + b} \over {ab}}} \right)} \right\}$$

Work Step by Step

$$\eqalign{ & ax + by = {b \over a} \cr & \,\,\,\,\,x + y = {1 \over b} \cr & {\rm{Given\, the\, system}} \cr & \left\{ {\matrix{ {{a_1}x + {b_1}y = {c_1}} \cr {{a_2}x + {b_2}y = {c_2}} \cr } } \right. \cr & D = \left| {\matrix{ {{a_1}} & {{b_1}} \cr {{a_2}} & {{b_2}} \cr } } \right|,\,\,\,{D_x} = \left| {\matrix{ {{c_1}} & {{b_1}} \cr {{c_2}} & {{b_2}} \cr } } \right|,\,\,{D_y} = \left| {\matrix{ {{a_1}} & {{c_1}} \cr {{a_2}} & {{c_2}} \cr } } \right| \cr & {\rm{First \,find\, }}D,{\rm{ If }}D \ne 0,\,{\rm{ then\, find\, }}{D_x\,}{\rm{ and }}{\,D_y} \cr & D = \left| {\matrix{ a & b \cr 1 & 1 \cr } } \right| = a - b \cr & {D_x} = \left| {\matrix{ {b/a} & b \cr {1/b} & 1 \cr } } \right| = {b \over a} - 1 \cr & {D_y} = \left| {\matrix{ a & {b/a} \cr 1 & {1/b} \cr } } \right| = {a \over b} - {b \over a} \cr & {\rm{Using \,the\, Cramer's \,rule}} \cr & x = {{{D_x}} \over D} = {{{b \over a} - 1} \over {a - b}} = {{b - a} \over {a\left( {a - b} \right)}} = - {1 \over a} \cr & \,\,y = {{{D_y}} \over D} = {{{a \over b} - {b \over a}} \over {a - b}} = {{{a^2} - {b^2}} \over {ab\left( {a - b} \right)}} = {{\left( {a + b} \right)\left( {a - b} \right)} \over {ab\left( {a - b} \right)}} = {{a + b} \over {ab}} \cr & {\rm{The \,solution \,set \,is}} \cr & \left\{ {\left( { - {1 \over a}\,\,,{{a + b} \over {ab}}} \right)} \right\} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.