Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 9 - Systems and Matrices - 9.3 Determinant Solution of Linear Systems - 9.3 Exercises - Page 888: 107

Answer

$$\left\{ {\left( {1,0} \right)} \right\}$$

Work Step by Step

$$\eqalign{ & {b^2}x + {a^2}y = {b^2} \cr & ax + by = a \cr & {\rm{Given\, the\, system}} \cr & \left\{ {\matrix{ {{a_1}x + {b_1}y = {c_1}} \cr {{a_2}x + {b_2}y = {c_2}} \cr } } \right. \cr & D = \left| {\matrix{ {{a_1}} & {{b_1}} \cr {{a_2}} & {{b_2}} \cr } } \right|,\,\,\,{D_x} = \left| {\matrix{ {{c_1}} & {{b_1}} \cr {{c_2}} & {{b_2}} \cr } } \right|,\,\,{D_y} = \left| {\matrix{ {{a_1}} & {{c_1}} \cr {{a_2}} & {{c_2}} \cr } } \right| \cr & {\rm{First\, find\, }}D,{\rm{ If }}D \ne 0,\,{\rm{ \,then\, find \,}}{D_x}{\rm{ \,and\, }}{D_y} \cr & D = \left| {\matrix{ {{b^2}} & {{a^2}} \cr a & b \cr } } \right| = {b^3} - {a^3} \cr & {D_x} = \left| {\matrix{ {{b^2}} & {{a^2}} \cr a & b \cr } } \right| = {b^3} - {a^3} \cr & {D_y} = \left| {\matrix{ {{b^2}} & {{b^2}} \cr a & a \cr } } \right| = a{b^2} - a{b^2} = 0 \cr & {\rm{Using \,the \,Cramer's\, rule}} \cr & x = {{{D_x}} \over D} = {{{b^3} - {a^3}} \over {{b^3} - {a^3}}} = 1 \cr & \,\,y = {{{D_y}} \over D} = {0 \over {{b^3} - {a^3}}} = 0 \cr & {\rm{The\, solution\, set\, is}} \cr & \left\{ {\left( {1,0} \right)} \right\} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.