Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 7 - Trigonometric Identities and Equations - 7.5 Inverse Circular Functions - 7.5 Exercises - Page 708: 45



Work Step by Step

Solve for radians, then convert to degrees. $y=\csc^{-1}x$ Domain: $(-\infty, -1]\cup[1, \infty)$ Range: $[-\displaystyle \frac{\pi}{2},0)\cup(0,\frac{\pi}{2}]$ Quadrants (unit circle): I and IV --------- $y$ is the number from $[-\displaystyle \frac{\pi}{2},0)\cup(0,\frac{\pi}{2}]$ such that $\csc y=-2\quad (\displaystyle \sin y=-\frac{1}{2})$ In quadrant I, $\displaystyle \sin\frac{\pi}{6}=\frac{1}{2}$, In quadrant IV, $\displaystyle \sin(-\frac{\pi}{6})=-\frac{1}{2}$, that is, $\csc (-\displaystyle \frac{\pi}{6})=-2$ and $-\displaystyle \frac{\pi}{6}\in [-\displaystyle \frac{\pi}{2},0)\cup(0,\frac{\pi}{2}]$. So, $y=-\displaystyle \frac{\pi}{6}$ To convert radians to degrees, multiply y with $\displaystyle \frac{180^{o}}{\pi}$ $\displaystyle \theta=-\frac{\pi}{6}\cdot\frac{180^{o}}{\pi}=-30^{o}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.