#### Answer

$60^{o}$

#### Work Step by Step

Solve for radians, then convert to degrees.
$y=\tan^{-1} x$
Domain: $(-\infty, \infty) $
Range: $(-\displaystyle \frac{\pi}{2}, \displaystyle \frac{\pi}{2})$
-------------
$y$ is the number from $(-\displaystyle \frac{\pi}{2}, \displaystyle \frac{\pi}{2})$ such that $\tan y=\sqrt3$
$\displaystyle \tan(\frac{\pi}{3})=\sqrt{3}\qquad$and$\displaystyle \quad \frac{\pi}{3}\in(-\frac{\pi}{2}, \displaystyle \frac{\pi}{2})$,
so
$y =\displaystyle \frac{\pi}{3}$
To convert radians to degrees, multiply y with $\displaystyle \frac{180^{o}}{\pi}$
$\displaystyle \theta=\frac{\pi}{3}\cdot\frac{180^{o}}{\pi}=60^{o}$