Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 7 - Trigonometric Identities and Equations - 7.5 Inverse Circular Functions - 7.5 Exercises: 38

Answer

$60^{o}$

Work Step by Step

Solve for radians, then convert to degrees. $y=\tan^{-1} x$ Domain: $(-\infty, \infty) $ Range: $(-\displaystyle \frac{\pi}{2}, \displaystyle \frac{\pi}{2})$ ------------- $y$ is the number from $(-\displaystyle \frac{\pi}{2}, \displaystyle \frac{\pi}{2})$ such that $\tan y=\sqrt3$ $\displaystyle \tan(\frac{\pi}{3})=\sqrt{3}\qquad$and$\displaystyle \quad \frac{\pi}{3}\in(-\frac{\pi}{2}, \displaystyle \frac{\pi}{2})$, so $y =\displaystyle \frac{\pi}{3}$ To convert radians to degrees, multiply y with $\displaystyle \frac{180^{o}}{\pi}$ $\displaystyle \theta=\frac{\pi}{3}\cdot\frac{180^{o}}{\pi}=60^{o}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.