Answer
$$\eqalign{
& {\text{Focus: }}\left( {9,2} \right) \cr
& {\text{directrix: }}x = - 3 \cr
& {\text{axis of symmetry: }}y = 2 \cr} $$
Work Step by Step
$$\eqalign{
& {\left( {y - 2} \right)^2} = 24\left( {x - 3} \right) \cr
& {\text{This equation is written in the form }}{\left( {y - k} \right)^2} = 4p\left( {x - h} \right){\text{ }} \cr
& {\text{represents Parabola with horizontal axis of symmetry}} \cr
& {\text{of Symmetry and Vertex }}\left( {h,k} \right). \cr
& \underbrace {{{\left( {y - 2} \right)}^2} = 24\left( {x - 3} \right)}_{{{\left( {y - k} \right)}^2} = 4p\left( {x - h} \right).} \cr
& {\text{Let }}k = 2,\,\,\,\,h = 3 \cr
& 4p = 24 \cr
& p = 6 \cr
& {\text{Focus}}\left( {p + h,k} \right){\text{ and directrix }}x = - p + h \cr
& {\text{Axis of symmetry }}y = k \cr
& {\text{Focus: }}\left( {6 + 3,2} \right) \cr
& {\text{Focus: }}\left( {9,2} \right) \cr
& {\text{directrix: }}x = - 6 + 3 \cr
& {\text{directrix: }}x = - 3 \cr
& {\text{axis of symmetry: }}y = 2 \cr
& \cr
& {\text{Focus: }}\left( {9,2} \right) \cr
& {\text{directrix: }}x = - 3 \cr
& {\text{axis of symmetry: }}y = 2 \cr} $$