Answer
The product of $ AB={{I}_{2}}$, product of $ BA={{I}_{2}}$ and $ B $ is the multiplicative inverse of $ A $: $ B={{A}^{-1}}$.
Work Step by Step
The provided expression is
$ A=\left[ \begin{matrix}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2} \\
\end{matrix} \right],B=\left[ \begin{matrix}
1 & 2 \\
3 & 4 \\
\end{matrix} \right]$
Now, we will compute the matrix as $\left[ AB \right]$
$\begin{align}
& AB=\left[ \begin{matrix}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2} \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 2 \\
3 & 4 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
\left( -2 \right)\times 1+1\times 3 & \left( -2 \right)\times 2+1\times 4 \\
\frac{3}{2}\times 1+\left( -\frac{1}{2} \right)\times 3 & \frac{3}{2}\times 2+\left( -\frac{1}{2} \right)\times 4 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& ={{I}_{2}}
\end{align}$
Now, we will compute the matrix as $\left[ BA \right]$
$\begin{align}
& BA=\left[ \begin{matrix}
1 & 2 \\
3 & 4 \\
\end{matrix} \right]\left[ \begin{matrix}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2} \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1\times \left( -2 \right)+2\times \frac{3}{2} & 1\times 1+2\times \left( -\frac{1}{2} \right) \\
3\times \left( -2 \right)+4\times \frac{3}{2} & 3\times 1+4\times \left( -\frac{1}{2} \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& ={{I}_{2}}
\end{align}$
Both matrix $ AB $ and matrix $ BA $ are equal to the identity matrix
Now, we will compute the matrix $ B={{A}^{-1}}$.
$ B=\left[ \begin{matrix}
1 & 2 \\
3 & 4 \\
\end{matrix} \right]$
And
$ A=\left[ \begin{matrix}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2} \\
\end{matrix} \right]$
Determine the inverse of matrix A.
Now, using inverse formula
${{A}^{-1}}=\frac{1}{\left| ad-bc \right|}\left[ \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right]$
Substitute the values to get
$\begin{align}
& a=-2 \\
& b=1 \\
& c=\frac{3}{2} \\
& d=-\frac{1}{2} \\
\end{align}$
So, $\begin{align}
& {{A}^{-1}}=\frac{1}{\left| 1-\frac{3}{2} \right|}\left[ \begin{matrix}
-\frac{1}{2} & -1 \\
-\frac{3}{2} & -2 \\
\end{matrix} \right] \\
& =\frac{2}{-1}\left[ \begin{matrix}
-\frac{1}{2} & -1 \\
-\frac{3}{2} & -2 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & 2 \\
3 & 4 \\
\end{matrix} \right]
\end{align}$
Thus, $ B $ is the multiplicative inverse of $ A $.