Chapter 8 - Section 8.4 - Multiplicative Inverses of Matrices and Matrix Equations - Exercise Set - Page 932: 30

The linear system can be written as $\left[ \begin{matrix} 7 & 5 \\ 3 & 2 \\ \end{matrix} \right]$ \left[ \begin{align} & x \\ & y \\ \end{align} \right] =\left[ \begin{align} & 23 \\ & 10 \\ \end{align} \right]

Work Step by Step

Consider the given system equations: \begin{align} & 7x+5y=23 \\ & 3x+2y=10 \end{align} The linear system can be written as: $AX=B$ $\left[ \begin{matrix} 7 & 5 \\ 3 & 2 \\ \end{matrix} \right]$ \left[ \begin{align} & x \\ & y \\ \end{align} \right] =\left[ \begin{align} & 23 \\ & 10 \\ \end{align} \right] Where, $A=\left[ \begin{matrix} 7 & 5 \\ 3 & 2 \\ \end{matrix} \right]$ X=\left[ \begin{align} & x \\ & y \\ \end{align} \right] B=\left[ \begin{align} & 23 \\ & 10 \\ \end{align} \right]

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.