## Precalculus (6th Edition) Blitzer

The inverse matrix of the provided matrix is ${{A}^{-1}}=\left[ \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & \frac{1}{3} & 0 \\ -1 & 0 & 0 & 1 \\ \end{matrix} \right]$.
Consider the given matrix $A=\left[ \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 1 & 0 & 0 & 1 \\ \end{matrix} \right]$. Compute the matrix of the form: $\left[ \left. A \right|I \right]$ The augmented matrix is: $\left[ \left. A \right|I \right]=\left[ \begin{matrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ \end{matrix} \right]$ Now, using row operation we will reduce matrix in row echelon form for inverse as below: \begin{align} & {{R}_{4}}\to {{R}_{4}}-1\times {{R}_{1}}, \\ & {{R}_{3}}\to \frac{1}{3}\times {{R}_{3}}, \\ & {{R}_{2}}\to -1\times {{R}_{2}} \\ \end{align} The resulting matrix is: \begin{align} & \left[ \left. A \right|I \right]=\left[ \begin{matrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \\ \end{matrix} \right] \\ & =\left[ \left. I \right|B \right] \end{align} Where ${{A}^{-1}}=\left[ B \right]$ So, The inverse of matrix is: ${{A}^{-1}}=\left[ \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & \frac{1}{3} & 0 \\ -1 & 0 & 0 & 1 \\ \end{matrix} \right]$ Now, check the result for $A{{A}^{-1}}={{I}_{4}}$ And, ${{A}^{-1}}A={{I}_{4}}$ Here, $A=\left[ \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 1 & 0 & 0 & 1 \\ \end{matrix} \right]$ and ${{A}^{-1}}=\left[ \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & \frac{1}{3} & 0 \\ -1 & 0 & 0 & 1 \\ \end{matrix} \right]$ So, \begin{align} & A{{A}^{-1}}=\left[ \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 1 & 0 & 0 & 1 \\ \end{matrix} \right]\left[ \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & \frac{1}{3} & 0 \\ -1 & 0 & 0 & 1 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1\times 1+0+0+0 & 0+0+0+0 & 0+0+0+0 & 0+0+0+0 \\ 0+0+0+0 & 0+\left( -1 \right)+0+0 & 0+0+0+0 & 0+0+0+0 \\ 0+0+0+0 & 0+0+0+0 & 0+0+3\times \frac{1}{3}+0 & 0+0+0+0 \\ 1+0+0+1\times \left( -1 \right) & 0+0+0+0 & 0+0+0+0 & 0+0+0+1 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{matrix} \right] \\ & ={{I}_{4}} \end{align} And, \begin{align} & {{A}^{-1}}A=\left[ \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & \frac{1}{3} & 0 \\ -1 & 0 & 0 & 1 \\ \end{matrix} \right]\left[ \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 1 & 0 & 0 & 1 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1+0+0+0 & 0+0+0+0 & 0+0+0+0 & 0+0+0+0 \\ 0+0+0+0 & 0+1+0+0 & 0+0+3+0 & 0+0+0+0 \\ 0+0+0+0 & 0+0+0+0 & 0+0+1+0 & 0+0+0+0 \\ \left( -1 \right)+0+0+1 & 0+0+0+0 & 0+0+0+0 & 0+0+0+1 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{matrix} \right] \\ & ={{I}_{4}} \end{align} Hence, $A{{A}^{-1}}={{I}_{4}}$ and ${{A}^{-1}}A={{I}_{4}}$.