Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.3 - Matrix Operations and Their Applications - Exercise Set - Page 918: 47

Answer

.

Work Step by Step

Prove that, $A\left( B+C \right)=AB+AC$ and $\left( A+B \right)C=AC+BC$ holds for any matrix $A,B$ and $C$. So, take the three matrices, $A=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right],B=\left[ \begin{matrix} 1 & 0 \\ 0 & -1 \\ \end{matrix} \right]\text{ and }C=\left[ \begin{matrix} -1 & 0 \\ 0 & 1 \\ \end{matrix} \right]$. First we will consider $A\left( B+C \right)$ , That is, $\begin{align} & A\left( B+C \right)=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right]\left( \left[ \begin{matrix} 1 & 0 \\ 0 & -1 \\ \end{matrix} \right]+\left[ \begin{matrix} -1 & 0 \\ 0 & 1 \\ \end{matrix} \right] \right) \\ & =\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right]\left( \left[ \begin{matrix} 1-1 & 0+0 \\ 0+0 & -1+1 \\ \end{matrix} \right] \right) \\ & =\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right]\left[ \begin{matrix} 0 & 0 \\ 0 & 0 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 0 & 0 \\ 0 & 0 \\ \end{matrix} \right] \end{align}$ Next we will find, $AB+AC$. For this consider, $\begin{align} & AB=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right]\left[ \begin{matrix} 1 & 0 \\ 0 & -1 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1\left( 1 \right)+0\left( 0 \right) & 1\left( 0 \right)+0\left( -1 \right) \\ 0\left( 1 \right)+1\left( 0 \right) & 0\left( 0 \right)+1\left( -1 \right) \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1 & 0 \\ 0 & -1 \\ \end{matrix} \right] \end{align}$ And, $\begin{align} & AC=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right]\left[ \begin{matrix} -1 & 0 \\ 0 & 1 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1\left( -1 \right)+0\left( 0 \right) & 1\left( 0 \right)+0\left( 1 \right) \\ 0\left( -1 \right)+1\left( 0 \right) & 0\left( 0 \right)+1\left( 1 \right) \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} -1 & 0 \\ 0 & 1 \\ \end{matrix} \right] \end{align}$ Now we will add $AB\text{ and }AC$ as below: $\begin{align} & AB+AC=\left[ \begin{matrix} 1 & 0 \\ 0 & -1 \\ \end{matrix} \right]+\left[ \begin{matrix} -1 & 0 \\ 0 & 1 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 0 & 0 \\ 0 & 0 \\ \end{matrix} \right] \end{align}$ This verifies that $A\left( B+C \right)=AB+AC=\left[ \begin{matrix} 0 & 0 \\ 0 & 0 \\ \end{matrix} \right]$. Next verify that $\left( A+B \right)C=AC+BC$. For this we will consider, $\begin{align} & \left( A+B \right)C=\left( \left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right]+\left[ \begin{matrix} 1 & 0 \\ 0 & -1 \\ \end{matrix} \right] \right)\left[ \begin{matrix} -1 & 0 \\ 0 & 1 \\ \end{matrix} \right] \\ & \left( \left[ \begin{matrix} 1+1 & 0+0 \\ 0+0 & 1-1 \\ \end{matrix} \right] \right)\left[ \begin{matrix} -1 & 0 \\ 0 & 1 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 2 & 0 \\ 0 & 0 \\ \end{matrix} \right]\left[ \begin{matrix} -1 & 0 \\ 0 & 1 \\ \end{matrix} \right] \end{align}$ After further simplification, we get, $\begin{align} & \left[ \begin{matrix} 2 & 0 \\ 0 & 0 \\ \end{matrix} \right]\left[ \begin{matrix} -1 & 0 \\ 0 & 1 \\ \end{matrix} \right]=\left[ \begin{matrix} 2\left( -1 \right)+0\left( 0 \right) & 2\left( 0 \right)+0\left( 1 \right) \\ 0\left( -1 \right)+\left( 0 \right)0 & 0\left( 0 \right)+0\left( 1 \right) \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} -2 & 0 \\ 0 & 0 \\ \end{matrix} \right] \end{align}$ Therefore, $\left( A+B \right)C=\left[ \begin{matrix} -2 & 0 \\ 0 & 0 \\ \end{matrix} \right]$ Now find $AC$ as follows: $\begin{align} & AC=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right]\left[ \begin{matrix} -1 & 0 \\ 0 & 1 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1\left( -1 \right)+0\left( 0 \right) & 1\left( 0 \right)+0\left( 1 \right) \\ 0\left( -1 \right)+1\left( 0 \right) & 0\left( 0 \right)+1\left( 1 \right) \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} -1 & 0 \\ 0 & 1 \\ \end{matrix} \right] \end{align}$ And $BC$ as follows: $\begin{align} & BC=\left[ \begin{matrix} 1 & 0 \\ 0 & -1 \\ \end{matrix} \right]\left[ \begin{matrix} -1 & 0 \\ 0 & 1 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1\left( -1 \right)+0\left( 0 \right) & 1\left( 0 \right)+0\left( 1 \right) \\ 0\left( -1 \right)+\left( -1 \right)0 & 0\left( 0 \right)+\left( -1 \right)1 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} -1 & 0 \\ 0 & -1 \\ \end{matrix} \right] \end{align}$ Add $AC+BC$ as follows: $\begin{align} & AC+BC=\left[ \begin{matrix} -1 & 0 \\ 0 & 1 \\ \end{matrix} \right]+\left[ \begin{matrix} -1 & 0 \\ 0 & -1 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} -1-1 & 0+0 \\ 0+0 & 1-1 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} -2 & 0 \\ 0 & 0 \\ \end{matrix} \right] \end{align}$ Therefore, $AC+BC=\left[ \begin{matrix} -2 & 0 \\ 0 & 0 \\ \end{matrix} \right]$ This verifies that, $\left( A+B \right)C=AC+BC=\left[ \begin{matrix} -2 & 0 \\ 0 & 0 \\ \end{matrix} \right]$ Hence, the distributive property is verified.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.