Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.7 - The Dot Product - Exercise Set - Page 799: 47

Answer

a. symmetric with respect to the polar axis. b. may not be symmetric with respect to the line $\theta=\frac{\pi}{2}$. c. may not be symmetric with respect to the pole.

Work Step by Step

a. Given $r=5+3cos\theta$. To test the symmetry with respect to the polar axis, replace $(r,\theta)$ with $(r,-\theta)$. We have $r=5+3cos(-\theta)$, which gives $r=5+3cos\theta$. Thus the equation is symmetric with respect to the polar axis. b. To test the symmetry with respect to the line $\theta=\frac{\pi}{2}$, replace $(r,\theta)$ with $(-r,-\theta)$. We have $-r=5+3cos(-\theta)$, which gives $r=-5-3cos\theta$. Thus the equation may not be symmetric with respect to the line $\theta=\frac{\pi}{2}$. c. To test the symmetry with respect to the pole, replace $(r,\theta)$ with $(-r,\theta)$. We have $-r=5+3cos(\theta)$, which gives $r=-5-3cos\theta$. Thus the equation may not be symmetric with respect to the pole.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.