Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Section 6.5 - Complex Numbers in Polar Form; DeMoivre's Theorem - Exercise Set - Page 768: 64

Answer

The power of the complex number ${{\left( \sqrt{2}-i \right)}^{4}}$ in the rectangular form is $z=-7-5.7i$.

Work Step by Step

Consider the given complex number to write in the polar form, $z={{\left( \sqrt{2}-i \right)}^{4}}$ For a complex number $z=x+iy$, the polar form is given by, $z=r\left( \cos \theta +i\sin \theta \right)$ Here, $x=r\cos \theta \ \text{ and }\ y=r\sin \theta $, dividing the value of y by x, to get $\tan \theta =\frac{y}{x}$ Also, the value of r is called the moduli of the complex number, given by, $\begin{align} & r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\ & r=\sqrt{{{\left( \sqrt{2} \right)}^{2}}+{{\left( -1 \right)}^{2}}} \\ & r=\sqrt{2+1} \\ & r=\sqrt{3} \\ \end{align}$ For any complex number $z=x+iy$, the sign of the value of x and y determine in which quadrant the value of $z=x+iy$ would lie, If the value of x is positive and the value of y is positive, then the angle $\theta $ lies in the first quadrant having the value of $\theta $ as $\theta $. Also, if the value of x is negative and the value of y is positive, then the angle $\theta $ lies in the second quadrant having the value of $\theta $ as $\pi -\theta $. Also, if the value of x is negative and the value of y is negative, then the angle $\theta $ lies in the third quadrant having the value of $\theta $ as $\pi +\theta $. Also, if the value of x is positive and the value of y is negative, then the angle $\theta $ lies in the fourth quadrant having the value of $\theta $ as $2\pi -\theta $. For the given complex number, $\begin{align} & \tan \theta =\frac{y}{x} \\ & \tan \theta =\frac{-1}{\sqrt{2}} \\ & \tan \theta =-\frac{1}{\sqrt{2}} \\ & \tan \theta =-\frac{\sqrt{2}}{2} \\ \end{align}$ Since $\theta $ lies in quadrant IV, so $\begin{align} & \theta =360{}^\circ -{{\tan }^{-1}}\left( \frac{\sqrt{2}}{2} \right) \\ & =360{}^\circ -35.3{}^\circ \\ & =324.7{}^\circ \end{align}$ Now, $z=\sqrt{3}\left( \cos 324.7{}^\circ +i\sin 324.7{}^\circ \right)$ The polar form of the complex number is $z=\sqrt{3}\left( \cos 324.7{}^\circ +i\sin 324.7{}^\circ \right)$ Consider the given complex number in the polar form, $z=\sqrt{3}\left( \cos 324.7{}^\circ +i\sin 324.7{}^\circ \right)$ If n is a positive integer, then z to the nth power, ${{z}^{n}}$ is $\begin{align} & {{z}^{n}}={{\left[ r\left( \cos \theta +i\sin \theta \right) \right]}^{n}} \\ & ={{r}^{n}}\left( \cos n\theta +i\sin n\theta \right) \end{align}$ ${{z}^{n}}={{r}^{n}}\left( \cos n\theta +i\sin n\theta \right)$ Now, for the given complex number, $\begin{align} & z={{\left[ \sqrt{3}\left( \cos 324.7{}^\circ +i\sin 324.7{}^\circ \right) \right]}^{4}} \\ & z={{\left( \sqrt{3} \right)}^{4}}\left( \cos 4\times 324.7{}^\circ +i\sin 4\times 324.7{}^\circ \right) \\ & z=9\left( \cos 1298.8{}^\circ +i\sin 1298.8{}^\circ \right) \\ & z\approx -7-5.7i \\ \end{align}$ The power of the complex numbers in the rectangular form is $z=-7-5.7i$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.