Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Section 11.4 - Introduction to Derrivatives - Exercise Set - Page 1174: 19

Answer

a) The derivative of $f\left( x \right)={{x}^{2}}-3x+5$ at x is $f'\left( x \right)=2x-3$. b) The slope of the tangent line to the graph of $f\left( x \right)={{x}^{2}}-3x+5$ at $x=\frac{3}{2}$ is $f'\left( \frac{3}{2} \right)=0$ and at $x=2$ is $f'\left( 2 \right)=1$.

Work Step by Step

(a) Consider the function, $f\left( x \right)={{x}^{2}}-3x+5$ Now, compute the derivate of $f\left( x \right)={{x}^{2}}-3x+5$ using the formula $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( x+h \right)-f\left( x \right)}{h}$ To compute $f\left( x+h \right)$, substitute $x=x+h$ in the function $f\left( x \right)={{x}^{2}}-3x+5$. $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{\left[ {{\left( x+h \right)}^{2}}-3\left( x+h \right)+5 \right]-\left( {{x}^{2}}-3x+5 \right)}{h}$ Now, simplify ${{\left( x+h \right)}^{2}}$ by using the property ${{\left( A+B \right)}^{2}}={{A}^{2}}+2AB+{{B}^{2}}$ and $-3\left( x+h \right)$ by using the distributive property $A\left( B+C \right)=AB+AC$. $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{{{x}^{2}}+2xh+{{h}^{2}}-3x-3h+5-{{x}^{2}}+3x-5}{h}$ Combine the like terms in the numerator; this gives, $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{2xh+{{h}^{2}}-3h}{h}$ Divide numerator and denominator by h. $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( 2x+h-3 \right)$ Apply the limits, $\begin{align} & f'\left( x \right)=2x+0-3 \\ & =2x-3 \end{align}$ Thus, the derivative of $f\left( x \right)={{x}^{2}}-3x+5$ at x is $f'\left( x \right)=2x-3$. (b) Consider the function, $f\left( x \right)={{x}^{2}}-3x+5$ From part (a), the derivative of $f\left( x \right)={{x}^{2}}-3x+5$ at x is $f'\left( x \right)=2x-3$. To compute the slope of the tangent line at $x=\frac{3}{2}$, substitute $x=\frac{3}{2}$ in $f'\left( x \right)$. $\begin{align} & f'\left( \frac{3}{2} \right)=2\left( \frac{3}{2} \right)-3 \\ & =3-3 \\ & =0 \end{align}$ To compute the slope of the tangent line at $x=2$, substitute $x=2$ in $f'\left( x \right)$. $\begin{align} & f'\left( 2 \right)=2\left( 2 \right)-3 \\ & =4-3 \\ & =1 \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.