Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Section 11.2 - Finding Limits Using Properties of Limits - Exercise Set - Page 1154: 57

Answer

The limit $\underset{x\to 4}{\mathop{\lim }}\,{{f}^{-1}}\left( x \right)$ is $\frac{5}{2}$.

Work Step by Step

Consider the provided function, $ f\left( x \right)=\frac{2x+1}{x-1}$ Follow the steps to find and inverse of the function to get the inverse of $ f\left( x \right)=\frac{2x+1}{x-1}$. Step 1: Replace $ f\left( x \right)$ with $ y $. $ y=\frac{2x+1}{x-1}$ Step 2: Interchange $ y $ and $ x $. $ x=\frac{2y+1}{y-1}$ Step 3: Solve for $ y $. $ x=\frac{2y+1}{y-1}$ Divide the numerator by denominator $\begin{align} & x=\frac{2y+1}{y-1} \\ & =\frac{2\left( y-1 \right)+3}{y-1} \\ & =2+\frac{3}{y-1} \end{align}$ Adding $\left( -2 \right)$ on both sides, $\begin{align} & x+\left( -2 \right)=2+\left( -2 \right)+\frac{3}{y-1} \\ & x-2=\frac{3}{y-1} \\ & y-1=\frac{3}{x-2} \end{align}$ Adding $1$ to both sides of the equation, $\begin{align} & y-1=\frac{3}{x-2} \\ & y-1+1=\frac{3}{x-2}+1 \end{align}$ Take the L.C.M of $\left( x-2 \right)$ and 1 as $\left( x-2 \right)$ and solve for $ y $. $\begin{align} & y-1+1=\frac{3}{x-2}+1 \\ & y=\frac{3+x-2}{x-2} \\ & y=\frac{x+1}{x-2} \end{align}$ Step 4: Replace $ y $ with ${{f}^{-1}}\left( x \right)$. ${{f}^{-1}}\left( x \right)=\frac{x+1}{x-2}$ Thus, ${{f}^{-1}}\left( x \right)=\frac{x+1}{x-2}$. Solve the limit $\underset{x\to 4}{\mathop{\lim }}\,{{f}^{-1}}\left( x \right)$. $\underset{x\to 4}{\mathop{\lim }}\,{{f}^{-1}}\left( x \right)=\underset{x\to 4}{\mathop{\lim }}\,\frac{x+1}{x-2}$ Use the quotient property of limits $\begin{align} & \underset{x\to 4}{\mathop{\lim }}\,{{f}^{-1}}\left( x \right)=\underset{x\to 4}{\mathop{\lim }}\,\frac{x+1}{x-2} \\ & =\frac{\underset{x\to 4}{\mathop{\lim }}\,\left( x+1 \right)}{\underset{x\to 4}{\mathop{\lim }}\,\left( x-2 \right)} \end{align}$ Use the limit property $\underset{x\to a}{\mathop{\lim }}\,\left( f\left( x \right)-g\left( x \right) \right)=\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)-\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)$ and $\underset{x\to a}{\mathop{\lim }}\,\left( f\left( x \right)+g\left( x \right) \right)=\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)+\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)$. $\begin{align} & \underset{x\to 4}{\mathop{\lim }}\,{{f}^{-1}}\left( x \right)=\underset{x\to 4}{\mathop{\lim }}\,\frac{x+1}{x-2} \\ & =\frac{\underset{x\to 4}{\mathop{\lim }}\,\left( x+1 \right)}{\underset{x\to 4}{\mathop{\lim }}\,\left( x-2 \right)} \\ & =\frac{\underset{x\to 4}{\mathop{\lim }}\,x+\underset{x\to 4}{\mathop{\lim }}\,1}{\underset{x\to 4}{\mathop{\lim }}\,x-\underset{x\to 4}{\mathop{\lim }}\,2} \end{align}$ Use the limit property $\underset{x\to a}{\mathop{\lim }}\,c=c\ \text{where c is a constant}\text{.}$ $\begin{align} & \underset{x\to 4}{\mathop{\lim }}\,{{f}^{-1}}\left( x \right)=\frac{\underset{x\to 4}{\mathop{\lim }}\,x+\underset{x\to 4}{\mathop{\lim }}\,1}{\underset{x\to 4}{\mathop{\lim }}\,x-\underset{x\to 4}{\mathop{\lim }}\,2} \\ & =\frac{4+1}{4-2} \\ & =\frac{5}{2} \end{align}$ Thus, the limit $\underset{x\to 4}{\mathop{\lim }}\,{{f}^{-1}}\left( x \right)$ is $\frac{5}{2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.