#### Answer

$\dfrac{73}{99}$

#### Work Step by Step

The general formula to find the sum of an infinite Geometric series is given as:
$ S_{n}=\dfrac{a_1}{(1-r)}$
Here, we have the first term $ a_1=\dfrac{73}{100}$
Now, $ S_{n}=\dfrac{a_1}{(1-r)}=\dfrac{\dfrac{73}{100}}{1-\dfrac{1}{100}}$
Our answer is: $ S_{n}=\dfrac{73/100}{99/100}=\dfrac{73}{99}$