Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 10 - Section 10.1 - Sequences and Summation Notation - Concept and Vocabulary Check - Page 1048: 8

Answer

$\sum\limits_{i=1}^{n}{{{a}_{i}}}=\underline{{{a}_{1}}}+\underline{{{a}_{2}}}+\underline{{{a}_{3}}}+.....+\underline{{{a}_{n}}}$. In this summation notation, $i$ is called the index of summation, $n$ is the upper limit of summation, and $1$ is the lower limit of summation.

Work Step by Step

We know that the sum of the first n terms of a sequence is represented by the summation notation$\sum\limits_{i=1}^{n}{{{a}_{i}}}={{a}_{1}}+{{a}_{2}}+{{a}_{3}}+.....+{{a}_{n}}$. Here, $i$ stands for index of summation, $n$ is the upper limit of summation, and $1$ is the lower limit of summation. Any letter can be used to represent the index of summation and the lower limit of summation can be an integer, but not $1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.