Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.3 - More on Functions and Their Graphs - Exercise Set - Page 200: 143


The value of the expression $\frac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ is $3$.

Work Step by Step

Consider the coordinates: $\left( {{x}_{1}},{{y}_{1}} \right)=\left( -3,1 \right)\text{ and }\left( {{x}_{2}},{{y}_{2}} \right)=\left( -2,4 \right)$ The objective is to calculate $\frac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ if $\left( {{x}_{1}},{{y}_{1}} \right)=\left( -3,1 \right)\text{ and }\left( {{x}_{2}},{{y}_{2}} \right)=\left( -2,4 \right)$ Therefore, substitute the coordinates in the equations $\frac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ Therefore, $\begin{align} & \frac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\frac{4-1}{-2-\left( -3 \right)} \\ & =\frac{3}{-2+3} \\ & =3 \end{align}$ Therefore, the required solution is $\frac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.