Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 10 - Analytic Geometry - Chapter Review - Cumulative Review - Page 701: 12



Work Step by Step

We are given the parametric equations: $\begin{cases} x=5\tan t\\ y=5\sec^2 t \end{cases}$ with $-\dfrac{\pi}{2}\lt t\lt \dfrac{\pi}{2}$ Rewrite the equations: $\begin{cases} \tan t=\dfrac{x}{5}\\ \sec^2 t=\dfrac{y}{5} \end{cases}$ Use the identity: $\tan^2 t+1=\sec^2 t$ $\left(\dfrac{x}{5}\right)^2+1=\dfrac{y}{5}$ $\dfrac{x^2}{25}+1=\dfrac{y}{5}$ $x^2+25=5y$ $x^2=5y-25$ $x^2=5(y-5)$ The curve represents a parabola.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.