Answer
The volume of the sphere is $\frac{256}{3}\pi \text{ cm}^3$.
The surface area of the sphere is $64\pi \text{ cm}^2$.
Work Step by Step
The volume $V$ of a sphere is given by the formula $V=\frac{4}{3}\pi{r}^3$ where $r$ the radius.
Substitute the given values to obtain:
$V=\dfrac{4}{3}\pi (4\text{ cm})^3$
$V=\dfrac{256}{3}\pi \;cm^3$
Hence, the volume of the sphere is $\frac{256}{3}\pi \text{ cm}^3$.
Surface area of the sphere $S=4\pi r^2$.
Substitute the given values to obtain:
$S=4\pi (4\text{ cm})^2$
$S=64\pi \text{ cm}^2$
Hence, the surface area of the sphere is $64\pi\text{ cm}^2$.