Functions Modeling Change: A Preparation for Calculus, 5th Edition

Published by Wiley
ISBN 10: 1118583191
ISBN 13: 978-1-11858-319-7

Chapter 9 - Trigonometric Identities, Models, and Complex Numbers - 9.2 Identities, Expressions, and Equations - Exercises and Problems for Section 9.2 - Exercises and Problems - Page 363: 17


$$\frac{\cos \left(φ\right)-1}{\sin \left(φ\right)}+\frac{\sin \left(φ\right)}{\cos \left(φ\right)+1}$$

Work Step by Step

Simplifying the expression using trigonometric identities, we find: $$\frac{\left(\cos \left(φ\right)-1\right)}{\sin \left(φ\right)}+\frac{\left(\sin \left(φ\right)\right)}{\cos \left(φ\right)+1}=\frac{\cos \left(φ\right)-1}{\sin \left(φ\right)}+\frac{\sin \left(φ\right)}{\cos \left(φ\right)+1} \\ \frac{\cos \left(φ\right)-1}{\sin \left(φ\right)}+\frac{\sin \left(φ\right)}{\cos \left(φ\right)+1}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.