Functions Modeling Change: A Preparation for Calculus, 5th Edition

Published by Wiley
ISBN 10: 1118583191
ISBN 13: 978-1-11858-319-7

Chapter 4 - Exponential Functions - Review Exercises and Problems for Chapter Four - Page 179: 53

Answer

$g(n)=1000(0.7071)^n$

Work Step by Step

We have $g(n)=\sqrt{f(n) \cdot f(n-1)}$ where $$ \begin{aligned} f(n) & =1000 \cdot 2^{-\frac{1}{4}-\frac{n}{2}} \\ & =1000 \cdot 2^{-\frac{1}{4}} \cdot 2^{-\frac{n}{2}} \end{aligned} $$ and $$ \begin{aligned} f(n-1) & =1000 \cdot 2^{-\frac{1}{4}-\frac{n-1}{2}} \\ & =1000 \cdot 2^{-\frac{1}{4}} \cdot 2^{-\frac{n-1}{2}} \\ & =1000 \cdot 2^{-\frac{1}{4}} \cdot 2^{\frac{1-n}{2}} \\ & =1000 \cdot 2^{-\frac{1}{4}} \cdot 2^{\frac{1}{2}-\frac{n}{2}} \\ & =1000 \cdot 2^{-\frac{1}{4}} \cdot 2^{\frac{1}{2}} \cdot 2^{-\frac{n}{2}} \\ & =1000 \cdot 2^{-\frac{1}{4}+\frac{1}{2}} \cdot 2^{-\frac{n}{2}} \\ & =1000 \cdot 2^{\frac{1}{4}} \cdot 2^{-\frac{n}{2}} \end{aligned} $$ So that $$ \begin{aligned} f(n) \cdot f(n-1) & =\left(1000 \cdot 2^{-\frac{1}{4}} 2^{-\frac{n}{2}}\right)\left(1000 \cdot 2^{\frac{1}{4}} \cdot 2^{-\frac{n}{2}}\right) \\ & =1000 \cdot 1000 \cdot 2^{-\frac{1}{4}} \cdot 2^{\frac{1}{4}} \cdot 2^{-\frac{n}{2}} \cdot 2^{-\frac{n}{2}} \\ & =1,000,000 \cdot 2^{-n} \end{aligned} $$ Hence $$ \begin{aligned} g(n) & =\sqrt{f(n) \cdot f(n-1)} \\ & =\sqrt{1,000,000 \cdot 2^{-n}} \\ & =\sqrt{1,000,000}\cdot \sqrt{2^{-n}} \\ & =1000\left(2^{-n}\right)^{0.5} \\ & =1000 \cdot 2^{-0.5 n} \\ & =1000\left(2^{-0.5}\right)^n \\ & =1000(0.7071)^n . \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.