#### Answer

{$\frac{25}{3}$}

#### Work Step by Step

5x - (2x- 10) = 35
Step 1 : Drop parentheses and change the sign of each term in parentheses: - (2x - 10) = -2x + 10
5x - 2x + 10 = 35
Step 2: Combine like terms 5x - 2x = (5-2)x = 3x
3x + 10 = 35
Step 3: subtract 10 from both the sides
3x +10 - 10 = 35 -10
Step 4: Simplify
3x = 25
Step 5: Divide both the sides by 3
$\frac{3x}{3}$ = $\frac{25}{3}$
Step 6: Simplify
x = $\frac{25}{3}$
Now we check the proposed solution, $\frac{25}{3}$, by replacing x with $\frac{25}{3}$ in the original equation.
Step 1: the original equation 5x - (2x -10) = 35
Step2: Substitute $\frac{25}{3}$ for x
5. $\frac{25}{3}$ - (2.($\frac{25}{3}$) - 10) = 35
Step 3: Multiply 2. $\frac{25}{3}$= $\frac{50}{3}$. 5. $\frac{25}{3}$ = $\frac{125}{3}$
$\frac{125}{3}$ - ($\frac{50}{3}$ - 10) = 35
Step 4: Solve parenthesis $\frac{50}{3}$ - 10= $\frac{20}{3}$
$\frac{125}{3}$ - $\frac{20}{3}$ = 35
Step 5: Subtract
$\frac{105}{3}$ = 35
Step 6
35 = 35
Since the check results in true statement, we conclude that the solution set of the given equation is {$\frac{25}{3}$}