Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 7 - Functions - Exercise Set 7.2 - Page 416: 55

Answer

\[ f^{-1}(x) \;=\; \frac{x+1}{x-1}, \quad x \neq 1. \]

Work Step by Step

Given the function\[ f(x) \;=\; \frac{x + 1}{x - 1}, \quad\text{for real }x \neq 1. \] We will show that, with the domain \(\mathbb{R}\setminus\{1\}\) and the codomain \(\mathbb{R}\setminus\{1\}\), this \(f\) is a one-to-one correspondence (bijection), and we will find its inverse. --- ## 1. Injectivity To check that \(f\) is injective, suppose \[ f(x_1) \;=\; f(x_2). \] That is, \[ \frac{x_1 + 1}{x_1 - 1} \;=\; \frac{x_2 + 1}{x_2 - 1}, \] with \(x_1, x_2 \neq 1\). Cross-multiplying gives \[ (x_1 + 1)(x_2 - 1) \;=\; (x_2 + 1)(x_1 - 1). \] Expand both sides: - Left side: \((x_1 + 1)(x_2 - 1) = x_1x_2 - x_1 + x_2 - 1.\) - Right side: \((x_2 + 1)(x_1 - 1) = x_1x_2 - x_2 + x_1 - 1.\) Set them equal and cancel common terms \(x_1x_2\) and \(-1\): \[ -x_1 + x_2 \;=\; -x_2 + x_1. \] Rearrange: \[ -x_1 - x_1 \;=\; -x_2 - x_2 \;\;\Longrightarrow\;\; -2x_1 \;=\; -2x_2 \;\;\Longrightarrow\;\; x_1 \;=\; x_2. \] Hence \(f\) is **injective**. --- ## 2. Surjectivity onto \(\mathbb{R}\setminus\{1\}\) We must see if every \(y \neq 1\) arises as \(f(x)\) for some \(x \neq 1\). So fix \(y \in \mathbb{R}\setminus\{1\}\) and solve \[ \frac{x + 1}{x - 1} \;=\; y. \] Cross-multiply: \[ x + 1 \;=\; y\,(x - 1). \] Distribute \(y\): \[ x + 1 = yx - y. \] Rearrange to isolate \(x\): \[ x - yx = -y - 1 \;\;\Longrightarrow\;\; x(1 - y) = -\,(y + 1). \] Because \(y \neq 1\), \(1 - y \neq 0\). Thus, \[ x = \frac{-(y + 1)}{1 - y}. \] Multiply numerator and denominator by \(-1\) for a cleaner look: \[ x = \frac{y + 1}{y - 1}. \] We must check that this \(x\) is not 1. Indeed, if \(\frac{y+1}{y-1} = 1\), then \(y+1 = y-1\), forcing \(1=-1\), a contradiction. So \(x \neq 1\). Hence, for **every** \(y \neq 1\), there is a valid \(x \neq 1\) with \(f(x) = y\). Therefore, \(f\) is **onto** \(\mathbb{R}\setminus\{1\}\). --- ## 3. Bijection and Inverse Since \(f\) is both injective and surjective onto \(\mathbb{R}\setminus\{1\}\), it is a **one-to-one correspondence**. From the work above, the inverse is found by solving \(y = \tfrac{x+1}{x-1}\) for \(x\). We obtained \[ x = \frac{y+1}{\,y - 1\,}. \] Hence, the inverse function \(f^{-1} : \mathbb{R}\setminus\{1\} \to \mathbb{R}\setminus\{1\}\) is \[ f^{-1}(y) \;=\; \frac{y + 1}{y - 1}. \] Renaming the variable \(y\) back to \(x\) if desired, \[ f^{-1}(x) \;=\; \frac{x + 1}{\,x - 1\,}, \quad x \neq 1. \] Notice this has exactly the same form as \(f\), meaning \(f\) is its own inverse. --- ### Final Answer 1. With domain \(\mathbb{R}\setminus\{1\}\) and codomain \(\mathbb{R}\setminus\{1\}\), the function \[ f(x) \;=\; \frac{x+1}{x-1}, \quad x \neq 1, \] is a **one-to-one correspondence**. 2. Its inverse is \[ f^{-1}(x) \;=\; \frac{x+1}{x-1}, \quad x \neq 1. \] (Indeed, \(f\) is an involution: \(f = f^{-1}\).)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.