Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 7 - Functions - Exercise Set 7.2 - Page 416: 52

Answer

\[ f^{-1}(y) = \frac{1}{y - 1}, \quad y \neq 1. \]

Work Step by Step

Given the function: \[ f(x) \;=\; \frac{x+1}{x}, \quad \text{with domain } \{\,x\in\mathbb{R} : x \neq 0\}. \] Now we take the **codomain** to be \(\mathbb{R}\setminus\{1\}\). We must check whether \(f\) is a one-to-one correspondence (i.e., bijective) from \(\mathbb{R}\setminus\{0\}\) **onto** \(\mathbb{R}\setminus\{1\}\). --- ## 1. Is \(f\) One-to-One (Injective)? Suppose \(f(x_1) = f(x_2)\). That is, \[ \frac{x_1 + 1}{x_1} \;=\; \frac{x_2 + 1}{x_2}. \] We can rewrite \(f(x)\) as \[ f(x) \;=\; 1 \;+\; \frac{1}{x}. \] Thus, \(f(x_1) = f(x_2)\) implies \[ 1 + \frac{1}{x_1} \;=\; 1 + \frac{1}{x_2} \quad\Longrightarrow\quad \frac{1}{x_1} \;=\; \frac{1}{x_2} \quad\Longrightarrow\quad x_1 \;=\; x_2, \] as long as \(x_1, x_2 \neq 0\). Hence \(f\) is **injective** on its domain. --- ## 2. Is \(f\) Onto \(\mathbb{R}\setminus\{1\}\) (Surjective)? We want to see if for **every** real \(y \neq 1\), there exists an \(x \neq 0\) such that \[ f(x) \;=\; y \quad\Longleftrightarrow\quad 1 + \frac{1}{x} \;=\; y \quad\Longleftrightarrow\quad \frac{1}{x} \;=\; y - 1 \quad\Longleftrightarrow\quad x \;=\; \frac{1}{\,y - 1\,}. \] - This formula for \(x\) makes sense **only** if \(y \neq 1\), ensuring \(y-1 \neq 0\). - Furthermore, if \(y \neq 1\), then \(\tfrac{1}{y-1}\neq 0\), so \(x\) is indeed in the domain \(\mathbb{R}\setminus\{0\}\). Thus, **every** \(y\in \mathbb{R}\setminus\{1\}\) is achieved by some \(x \neq 0\). So \(f\) is **onto** \(\mathbb{R}\setminus\{1\}\). --- ## 3. Conclusion: One-to-One Correspondence Since \(f\) is both injective and surjective onto \(\mathbb{R}\setminus\{1\}\), it is a **bijective** map \[ f : \bigl(\mathbb{R}\setminus\{0\}\bigr)\;\longrightarrow\;\bigl(\mathbb{R}\setminus\{1\}\bigr). \] --- ## 4. Inverse Function To find \(f^{-1}\), solve \(y = 1 + \tfrac{1}{x}\) for \(x\): \[ y - 1 = \frac{1}{x} \quad\Longrightarrow\quad x = \frac{1}{\,y - 1\,}. \] Hence the inverse is \[ f^{-1}(y) \;=\; \frac{1}{\,y - 1\,}, \quad \text{with domain } \mathbb{R}\setminus\{1\} \text{ and range } \mathbb{R}\setminus\{0\}. \] --- ### Final Answer - With the codomain taken to be \(\mathbb{R}\setminus\{1\}\), the function \[ f(x) = \frac{x + 1}{x}, \quad x \neq 0, \] is indeed a **one-to-one correspondence**. - Its inverse is \[ f^{-1}(y) = \frac{1}{y - 1}, \quad y \neq 1. \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.