Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 7 - Functions - Exercise Set 7.2 - Page 416: 41

Answer

See explanation

Work Step by Step

To prove \(F\bigl(F^{-1}(B)\bigr) = B\) for all subsets \(B \subseteq Y\), given that \(F : X \to Y\) is onto (surjective), proceed as follows: --- ### 1. Show \(F\bigl(F^{-1}(B)\bigr) \subseteq B\) Let \(y \in F\bigl(F^{-1}(B)\bigr)\). By definition, there exists some \(x \in X\) such that \[ x \in F^{-1}(B) \quad \text{and} \quad F(x) = y. \] Since \(x \in F^{-1}(B)\), it follows that \(F(x) \in B\). Hence \(y \in B\). Because \(y\) was arbitrary, we conclude \[ F\bigl(F^{-1}(B)\bigr) \subseteq B. \] --- ### 2. Show \(B \subseteq F\bigl(F^{-1}(B)\bigr)\) Now let \(y \in B\). Because \(F\) is onto, there exists an \(x \in X\) such that \(F(x) = y\). Since \(y \in B\), that same \(x\) satisfies \(x \in F^{-1}(B)\). Therefore, \[ y = F(x) \in F\bigl(F^{-1}(B)\bigr). \] Thus every \(y \in B\) is in \(F\bigl(F^{-1}(B)\bigr)\), giving us \[ B \subseteq F\bigl(F^{-1}(B)\bigr). \] --- ### 3. Conclude equality Combining both inclusions, \[ F\bigl(F^{-1}(B)\bigr) \;\subseteq\; B \quad\text{and}\quad B \;\subseteq\; F\bigl(F^{-1}(B)\bigr), \] we obtain \[ F\bigl(F^{-1}(B)\bigr) \;=\; B. \] This completes the proof.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.