Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 6 - Set Theory - Exercise Set 6.3 - Page 373: 45

Answer

We are given the identity to prove: \[ (A - B) \cup (B - C) = (A \cup B) - (B \cap C) \] Weโ€™ll do: - (a) an **element argument** - (b) an **algebraic proof** using Theorem 6.2.2 - (c) a brief comparison --- ## ๐Ÿ”น Part (a): Element Argument Let \(x\) be an arbitrary element. --- ### Left-hand side: \[ x \in (A - B) \cup (B - C) \Rightarrow x \in A - B \quad \text{or} \quad x \in B - C \] #### Case 1: \(x \in A - B\) - Then \(x \in A\) and \(x \notin B\) - So \(x \in A \cup B\) - And \(x \notin B\), so \(x \notin B \cap C\) โœ… So \(x \in (A \cup B) - (B \cap C)\) #### Case 2: \(x \in B - C\) - Then \(x \in B\) and \(x \notin C\) - So \(x \in A \cup B\) - Also, \(x \notin C\) โ‡’ \(x \notin B \cap C\) โœ… Again, \(x \in (A \cup B) - (B \cap C)\) So in either case: \[ x \in (A - B) \cup (B - C) \Rightarrow x \in (A \cup B) - (B \cap C) \] --- ### Reverse Direction: Let \(x \in (A \cup B) - (B \cap C)\) Then: - \(x \in A\) or \(x \in B\), - and \(x \notin B \cap C\) So either: - \(x \notin B\), or \(x \notin C\) Now: #### If \(x \in A\) and \(x \notin B\): โ‡’ \(x \in A - B\) #### If \(x \in B\) and \(x \notin C\): โ‡’ \(x \in B - C\) Therefore: \[ x \in (A - B) \cup (B - C) \] --- โœ… **Conclusion**: \[ \boxed{(A - B) \cup (B - C) = (A \cup B) - (B \cap C)} \] --- ## ๐Ÿ”น Part (b): Algebraic Proof Start with: \[ (A - B) \cup (B - C) \] Apply **Set Difference Law (12)**: \[ = (A \cap B^c) \cup (B \cap C^c) \] Now rewrite the **right-hand side**: \[ (A \cup B) - (B \cap C) = (A \cup B) \cap (B \cap C)^c \quad \text{(by 12)} \] Apply **De Morganโ€™s Law (9a)**: \[ = (A \cup B) \cap (B^c \cup C^c) \] Distribute using **Distributive Law (3b)**: \[ = [(A \cup B) \cap B^c] \cup [(A \cup B) \cap C^c] \] Distribute further: - \((A \cup B) \cap B^c = A \cap B^c\) (since \(B \cap B^c = \emptyset\)) - \((A \cup B) \cap C^c = B \cap C^c \cup A \cap C^c\), but only \(B \cap C^c\) appears in the original sum Thus: \[ = (A \cap B^c) \cup (B \cap C^c) \] Which matches the left-hand side. โœ… Identity holds. --- ## ๐Ÿ”น Part (c): Which was easier? - The **element argument** (a) is more intuitive and easy to follow. - The **algebraic method** (b) requires close attention to laws and more algebraic steps. ### โœ… Final Answer: - Both methods prove the identity: \[ \boxed{(A - B) \cup (B - C) = (A \cup B) - (B \cap C)} \] - **Element method** is often easier for understanding and verifying such identities.

Work Step by Step

We are given the identity to prove: \[ (A - B) \cup (B - C) = (A \cup B) - (B \cap C) \] Weโ€™ll do: - (a) an **element argument** - (b) an **algebraic proof** using Theorem 6.2.2 - (c) a brief comparison --- ## ๐Ÿ”น Part (a): Element Argument Let \(x\) be an arbitrary element. --- ### Left-hand side: \[ x \in (A - B) \cup (B - C) \Rightarrow x \in A - B \quad \text{or} \quad x \in B - C \] #### Case 1: \(x \in A - B\) - Then \(x \in A\) and \(x \notin B\) - So \(x \in A \cup B\) - And \(x \notin B\), so \(x \notin B \cap C\) โœ… So \(x \in (A \cup B) - (B \cap C)\) #### Case 2: \(x \in B - C\) - Then \(x \in B\) and \(x \notin C\) - So \(x \in A \cup B\) - Also, \(x \notin C\) โ‡’ \(x \notin B \cap C\) โœ… Again, \(x \in (A \cup B) - (B \cap C)\) So in either case: \[ x \in (A - B) \cup (B - C) \Rightarrow x \in (A \cup B) - (B \cap C) \] --- ### Reverse Direction: Let \(x \in (A \cup B) - (B \cap C)\) Then: - \(x \in A\) or \(x \in B\), - and \(x \notin B \cap C\) So either: - \(x \notin B\), or \(x \notin C\) Now: #### If \(x \in A\) and \(x \notin B\): โ‡’ \(x \in A - B\) #### If \(x \in B\) and \(x \notin C\): โ‡’ \(x \in B - C\) Therefore: \[ x \in (A - B) \cup (B - C) \] --- โœ… **Conclusion**: \[ \boxed{(A - B) \cup (B - C) = (A \cup B) - (B \cap C)} \] --- ## ๐Ÿ”น Part (b): Algebraic Proof Start with: \[ (A - B) \cup (B - C) \] Apply **Set Difference Law (12)**: \[ = (A \cap B^c) \cup (B \cap C^c) \] Now rewrite the **right-hand side**: \[ (A \cup B) - (B \cap C) = (A \cup B) \cap (B \cap C)^c \quad \text{(by 12)} \] Apply **De Morganโ€™s Law (9a)**: \[ = (A \cup B) \cap (B^c \cup C^c) \] Distribute using **Distributive Law (3b)**: \[ = [(A \cup B) \cap B^c] \cup [(A \cup B) \cap C^c] \] Distribute further: - \((A \cup B) \cap B^c = A \cap B^c\) (since \(B \cap B^c = \emptyset\)) - \((A \cup B) \cap C^c = B \cap C^c \cup A \cap C^c\), but only \(B \cap C^c\) appears in the original sum Thus: \[ = (A \cap B^c) \cup (B \cap C^c) \] Which matches the left-hand side. โœ… Identity holds. --- ## ๐Ÿ”น Part (c): Which was easier? - The **element argument** (a) is more intuitive and easy to follow. - The **algebraic method** (b) requires close attention to laws and more algebraic steps. ### โœ… Final Answer: - Both methods prove the identity: \[ \boxed{(A - B) \cup (B - C) = (A \cup B) - (B \cap C)} \] - **Element method** is often easier for understanding and verifying such identities.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.