Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 6 - Set Theory - Exercise Set 6.3 - Page 373: 41

Answer

\[ \boxed{A \cap ((B \cup A^c) \cap B^c) = \emptyset} \] --- ## 💡 Cited Properties (from Theorem 6.2.2): - **(2b)**: Associative Law for intersection - **(3a)**: Distributive Law: \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\) - **(5b)**: Complement Law: \(A \cap A^c = \emptyset\) - **(4a)**: Identity Law: \(A \cup \emptyset = A\) - **(5b)** again: \(B \cap B^c = \emptyset\) - **(4b)**: Identity Law: \(A \cap \emptyset = \emptyset\)

Work Step by Step

We are asked to **simplify** the expression: \[ A \cap ((B \cup A^c) \cap B^c) \] Citing a property from **Theorem 6.2.2** at every step. --- ## ✅ Step-by-step Simplification: Start with: \[ A \cap \left( (B \cup A^c) \cap B^c \right) \] --- ### **Step 1: Apply Associative Law (2b)** Group all intersections together: \[ = (A \cap (B \cup A^c)) \cap B^c \] --- ### **Step 2: Distribute \(A\) over \((B \cup A^c)\)** using **Distributive Law (3a)** \[ = [(A \cap B) \cup (A \cap A^c)] \cap B^c \] --- ### **Step 3: Simplify \(A \cap A^c\)** using **Complement Law (5b)** \[ A \cap A^c = \emptyset \Rightarrow = [(A \cap B) \cup \emptyset] \cap B^c \] --- ### **Step 4: Use Identity Law (4a)** \[ (A \cap B) \cup \emptyset = A \cap B \] So now: \[ = (A \cap B) \cap B^c \] --- ### **Step 5: Distribute Intersection** (though not needed here — look carefully) We now have: \[ A \cap B \cap B^c \] Group as: \[ A \cap (B \cap B^c) \] Now apply **Complement Law (5b)**: \[ B \cap B^c = \emptyset \Rightarrow A \cap \emptyset = \emptyset \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.