Answer
See explanation
Work Step by Step
We have to prove:
$For\,\,all\,\,sets\,\,A,\,B,\,and\,C,\\$
$$(A - B) \cup (A \cap B) = A.$$ Proof:
$(A - B) \cup (A \cap B)=(A \cap B^c) \cup (A \cap B)\\
by\,\,\,(set\,\,dif\! ference\,\,law )\\ =A \cap (B^c \cup B)\\
by\,\,\,(distributive\,\,law)\\
\\ =A \cap U\\
by\,\,\,complement\,\,law \\
=A\\
by\ identity\,law\,for\,\cap )\\
$