Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 5 - Sequences, Mathematical Induction, and Recursion - Exercise Set 5.9 - Page 335: 22

Answer

See explanation

Work Step by Step

Below is a standard proof (by induction on \(n\)) of each of the three identities for the classical Ackermann function \[ A(m,n)= \begin{cases} n+1 & \text{if }m=0,\\[6pt] A(m-1,1) & \text{if }m>0\text{ and }n=0,\\[6pt] A\bigl(m-1,A(m,n-1)\bigr) & \text{if }m>0\text{ and }n>0. \end{cases} \] We show, for all nonnegative \(n\): 1. \(A(1,n) = n+2.\) 2. \(A(2,n) = 2n+3.\) 3. \(A(3,n) = 2^{\,n+3} - 3.\) --- ## 1. **\(A(1,n) = n + 2\)** We prove by induction on \(n\). - **Base Case** \((n=0)\): By definition for \(m>0\) and \(n=0\), \[ A(1,0) \;=\; A(0,1). \] Since \(A(0,k)=k+1\), we get \(A(0,1)=1+1=2\). On the right‐hand side, \(n+2 = 0+2=2\). Thus \(A(1,0)=2\) matches \(0+2\). - **Inductive Step**: Assume \(A(1,n)=n+2\) holds for some \(n\). We show it for \(n+1\). By definition (\(m=1>0\), \(n+1>0\)): \[ A(1,\,n+1) \;=\; A\bigl(0,\;A(1,n)\bigr). \] By the inductive hypothesis, \(A(1,n)=n+2\). Hence \[ A(1,\,n+1) = A\bigl(0,\;n+2\bigr) = (n+2) + 1 = n+3 = (n+1) + 2. \] This completes the induction. Thus for all \(n\ge0\), \[ \boxed{A(1,n)=n+2.} \] --- ## 2. **\(A(2,n) = 2n + 3\)** Again we do induction on \(n\). - **Base Case** \((n=0)\): By definition (\(m=2>0\), \(n=0\)): \[ A(2,0) \;=\; A(1,1). \] From part 1 (just proven), \(A(1,1)=1+2=3\). On the right side, \(2n+3 = 2\cdot0+3=3\). So \(A(2,0)=3\) matches \(2\cdot0+3\). - **Inductive Step**: Assume \(A(2,n)=2n+3\). We prove \(A(2,n+1)=2(n+1)+3\). By definition (\(m=2>0\), \(n+1>0\)): \[ A(2,n+1) \;=\; A\bigl(1,\;A(2,n)\bigr). \] By the inductive hypothesis, \(A(2,n)=2n+3\). So \[ A(2,n+1) = A\bigl(1,\;2n+3\bigr). \] From part 1, \(A(1,k)=k+2\). Substituting \(k=2n+3\) gives \[ A(1,\,2n+3) = (2n+3)+2 = 2n+5 = 2(n+1)+3. \] Hence \(A(2,n+1)=2(n+1)+3\), completing the induction. Therefore for all \(n\ge0\), \[ \boxed{A(2,n)=2n+3.} \] --- ## 3. **\(A(3,n) = 2^{n+3} - 3\)** Once more, prove by induction on \(n\). - **Base Case** \((n=0)\): By definition (\(m=3>0\), \(n=0\)): \[ A(3,0) \;=\; A(2,1). \] From part 2, \(A(2,1)=2\cdot1+3=5\). On the right side, \(2^{\,0+3}-3=2^3-3=8-3=5\). So \(A(3,0)=5\) matches \(2^{3}-3\). - **Inductive Step**: Assume \(A(3,n)=2^{n+3}-3\). We show \(A(3,n+1)=2^{(n+1)+3}-3\). By definition (\(m=3>0\), \(n+1>0\)): \[ A(3,n+1) \;=\; A\bigl(2,\;A(3,n)\bigr). \] By the inductive hypothesis, \(A(3,n)=2^{n+3}-3\). Thus \[ A(3,n+1) = A\bigl(2,\;2^{n+3}-3\bigr). \] From part 2, \(A(2,k)=2k+3\). Substituting \(k=2^{n+3}-3\) gives \[ A\bigl(2,\;2^{n+3}-3\bigr) = 2\bigl(2^{n+3}-3\bigr)+3 = 2^{n+4} -6 +3 = 2^{n+4} -3 = 2^{(n+1)+3}-3. \] This completes the induction step. Hence for all \(n\ge0\), \[ \boxed{A(3,n)=2^{\,n+3}-3.} \] --- ## **Summary** Using induction on \(n\) and the basic definition of Ackermann’s function, we obtain: 1. \(A(1,n) = n+2\). 2. \(A(2,n) = 2n+3\). 3. \(A(3,n) = 2^{n+3} \;-\; 3.\)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.