Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 5 - Sequences, Mathematical Induction, and Recursion - Exercise Set 5.9 - Page 335: 21

Answer

1. \(A(1,1) = 3.\) 2. \(A(2,1) = 5.\)

Work Step by Step

Below is a step‐by‐step derivation of the two requested Ackermann function values, using the classical three‐part definition (for all nonnegative integers \(m,n\)): \[ A(0, n) \;=\; n+1, \] \[ A(m, 0) \;=\; A(m-1, 1) \quad\text{(for \(m>0\))}, \] \[ A(m, n) \;=\; A\bigl(m-1,\; A(m,\,n-1)\bigr) \quad\text{(for \(m>0,\,n>0\))}. \] --- ## (a) \(A(1,1)\) We use the rule for \(m>0\) and \(n>0\): \[ A(m,n) \;=\; A\bigl(m-1,\; A(m,\,n-1)\bigr). \] Hence, \[ A(1,1) \;=\; A\bigl(1-1,\; A(1,\,1-1)\bigr) \;=\; A\bigl(0,\; A(1,0)\bigr). \] But when \(m>0\) and \(n=0\), we have: \[ A(m,0) \;=\; A(m-1,1). \] So \[ A(1,0) \;=\; A(0,1). \] By the first rule (\(A(0,n)=n+1\)), \[ A(0,1) \;=\; 1 + 1 \;=\; 2. \] Thus \(A(1,0)=2\). Substitute back: \[ A(1,1) \;=\; A(0,2) \;=\; 2 + 1 \;=\; 3. \] **Answer for (a):** \(\boxed{3}.\) --- ## (b) \(A(2,1)\) Again, for \(m>0\) and \(n>0\): \[ A(m,n) \;=\; A\bigl(m-1,\; A(m,\,n-1)\bigr). \] So \[ A(2,1) \;=\; A\bigl(2-1,\; A(2,\,1-1)\bigr) \;=\; A\bigl(1,\; A(2,0)\bigr). \] Since \(m>0\) and \(n=0\) implies \(A(m,0)=A(m-1,1)\), \[ A(2,0) \;=\; A(1,1). \] From part (a), we have \(A(1,1)=3\). Hence \[ A(2,1) \;=\; A(1,3). \] Now evaluate \(A(1,3)\). For \(m=1\) and \(n>0\): \[ A(1,3) \;=\; A\bigl(0,\; A(1,2)\bigr). \] We need \(A(1,2)\): \[ A(1,2) \;=\; A\bigl(0,\; A(1,1)\bigr). \] But we already know \(A(1,1)=3\), so \[ A(1,2) \;=\; A(0,3) \;=\; 3 + 1 \;=\; 4. \] Hence \[ A(1,3) \;=\; A(0,4) \;=\; 4 + 1 \;=\; 5. \] Therefore, \[ A(2,1) \;=\; A(1,3) \;=\; 5. \] **Answer for (b):** \(\boxed{5}.\)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.