Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 5 - Sequences, Mathematical Induction, and Recursion - Exercise Set 5.9 - Page 335: 19

Answer

See explanation

Work Step by Step

Below is a direct derivation from the definition of McCarthy’s 91 function: \[ M(n) \;=\; \begin{cases} n-10, & \text{if } n>100,\\[6pt] M\bigl(M(n+11)\bigr), & \text{if } n\le 100. \end{cases} \] We want to show: 1. \(M(86) = M(91)\). 2. \(M(91) = 91\). --- ## 1. Showing \(M(86) = M(91)\) Since \(86 \le 100\), the definition says \[ M(86) \;=\; M\bigl(M(86+11)\bigr) \;=\; M\bigl(M(97)\bigr). \] So we must evaluate \(M(97)\). Again \(97 \le 100\), so \[ M(97) \;=\; M\bigl(M(97+11)\bigr) \;=\; M\bigl(M(108)\bigr). \] But \(108 > 100\), so \[ M(108) \;=\; 108 - 10 \;=\; 98. \] Hence \[ M(97) \;=\; M(98). \] Similarly, \(98 \le 100\), so \[ M(98) \;=\; M\bigl(M(98+11)\bigr) \;=\; M\bigl(M(109)\bigr), \] and \(109 > 100 \implies M(109) = 99\). So \[ M(98) = M(99). \] Continuing in the same fashion: - \(99 \le 100 \implies M(99) = M(M(110))\), - \(110 > 100 \implies M(110) = 100\), - so \(M(99) = M(100)\). Then: - \(100 \le 100 \implies M(100) = M(M(111))\), - \(111 > 100 \implies M(111) = 101\), - so \(M(100) = M(101)\). Finally: - \(101 > 100 \implies M(101) = 91\). Hence working backward: \[ M(100) = 91,\quad M(99) = 91,\quad M(98) = 91,\quad M(97) = 91. \] Therefore \[ M(86) \;=\; M\bigl(M(97)\bigr) \;=\; M(91). \] This completes the proof of part (a). --- ## 2. Showing \(M(91) = 91\) We do a similar chain. Since \(91 \le 100\): \[ M(91) \;=\; M\bigl(M(91+11)\bigr) \;=\; M\bigl(M(102)\bigr). \] But \(102 > 100\), so \(M(102) = 102 - 10 = 92\). Hence \[ M(91) = M(92). \] Next \(92 \le 100 \implies M(92) = M(M(103))\), and \(103 > 100 \implies M(103)=93\). So \[ M(92) = M(93). \] Repeating this pattern: 1. \(93 \le 100\) \(\;M(93) = M(M(104))\), \(104 > 100 \implies M(104)=94.\) So \(M(93)=M(94).\) 2. \(94 \le 100\) \(\;M(94)=M(M(105))\), \(105>100 \implies M(105)=95.\) So \(M(94)=M(95).\) 3. \(95 \le 100\) \(\;M(95)=M(M(106))\), \(106>100 \implies M(106)=96.\) So \(M(95)=M(96).\) 4. \(96 \le 100\) \(\;M(96)=M(M(107))\), \(107>100 \implies M(107)=97.\) So \(M(96)=M(97).\) 5. \(97 \le 100\) \(\;M(97)=M(M(108))\), \(108>100 \implies M(108)=98.\) So \(M(97)=M(98).\) 6. \(98 \le 100\) \(\;M(98)=M(M(109))\), \(109>100 \implies M(109)=99.\) So \(M(98)=M(99).\) 7. \(99 \le 100\) \(\;M(99)=M(M(110))\), \(110>100 \implies M(110)=100.\) So \(M(99)=M(100).\) 8. \(100 \le 100\) \(\;M(100)=M(M(111))\), \(111>100 \implies M(111)=101.\) So \(M(100)=M(101).\) 9. \(101 > 100\) \(\;M(101)=91.\) Tracing back up shows \[ M(100)=91,\quad M(99)=91,\quad M(98)=91,\quad \dots,\quad M(92)=91,\quad M(91)=91. \] Thus \(M(91)=91\), completing part (b). --- ## Final Answers 1. **\(M(86) = M(91)\)**. 2. **\(M(91) = 91\).** Consequently, it also follows that \(M(86)=91\).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.