Linear Algebra: A Modern Introduction

Published by Cengage Learning
ISBN 10: 1285463242
ISBN 13: 978-1-28546-324-7

Chapter 3 - Matrices - 3.1 Matrix Operations - Exercises 3.1 - Page 153: 31

Answer

$A B=\left[\begin{array}{cc|c}3 & 2 & 0 \\ -1 & 1 & 0 \\ \hline 0 & 0 & 5\end{array}\right]$

Work Step by Step

Denote the blocks of the matrix A by $A_{1}, A_{2}, A_{3},$ and $A_{4}$, \[ A=\left[\begin{array}{cc|cc} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 2 & 3 \end{array}\right] \quad B=\left[\begin{array}{cc|c} 2 & 3 & 0 \\ -1 & 1 & 0 \\ \hline 0 & 0 & 1 \\ 0 & 0 & 1 \end{array}\right] \] and the blocks of the matrix $\mathrm{B}$ by $B_{1}, B_{2}, B_{3},$ and $B_{4}$ \[ \begin{aligned} A=\left[\begin{array}{cc} A_{1} & A_{2} \\ A_{3} & A_{4} \end{array}\right] B=\left[\begin{array}{cc} B_{1} & B_{2} \\ B_{3} & B_{4} \end{array}\right] \\ A B=\left[\begin{array}{cc} A_{1} B_{1}+A_{2} B_{3} & A_{1} B_{2}+A_{2} B_{4} \\ A_{3} B_{1}+A_{4} B_{3} & A_{3} B_{2}+A_{4} B_{4} \end{array}\right] & \text { Calculate } A_{1} B_{1}+A_{2} B_{3} \end{aligned} \] $A_{1} B_{1}+A_{2} B_{3}=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}2 & 3 \\ -1 & 1\end{array}\right]+\left[\begin{array}{cc}0 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}0 & 0 \\ 0 & 0\end{array}\right]=$ Calculate $A_{1} B_{2}+A_{2} B_{4}$ $\left[\begin{array}{cc}3 & 2 \\ -1 & 1\end{array}\right]$ Calculate $A_{1} B_{2}+A_{2} B_{4}=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}0 \\ 0\end{array}\right]+\left[\begin{array}{cc}0 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ $A_{3} B_{1}+A_{4} B_{3}$ Calculate $A_{3} B_{1}+A_{4} B_{3}=\left[\begin{array}{ll}0 & 0\end{array}\right]\left[\begin{array}{cc}2 & 3 \\ -1 & 1\end{array}\right]+\left[\begin{array}{cc}2 & 3\end{array}\right]\left[\begin{array}{cc}0 & 0 \\ 0 & 0\end{array}\right]=$ $A_{3} B_{2}+A_{4} B_{4}$ 0 $A_{3} B_{1}+A_{4} B_{3}=\left[\begin{array}{ll}0 & 0\end{array}\right]\left[\begin{array}{l}0 \\ 0\end{array}\right]+\left[\begin{array}{ll}2 & 3\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{ll}5\end{array}\right] \quad \begin{array}{c}\text { Back substitute these values into the formula of the } \\ \text { product } \mathrm{AB}\end{array}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.