Linear Algebra: A Modern Introduction

Published by Cengage Learning
ISBN 10: 1285463242
ISBN 13: 978-1-28546-324-7

Chapter 3 - Matrices - 3.1 Matrix Operations - Exercises 3.1 - Page 153: 23

Answer

$$AB =\left[\begin{array}{ccc}{2a_1+a_2-a_3} & {3a_1-a_2+6a_3} & {a_2+4a_3} \end{array}\right] .$$

Work Step by Step

Let $$ A=\left[\begin{array}{ccc}{1} & {0} & {-2} \\ {-3} & {1} & {1} \\ {2} & {0} & {-1}\end{array}\right], B=\left[\begin{array}{ccc}{2} & {3} & {0} \\ {1} & {-1} & {1} \\ {-1} & {6} & {4}\end{array}\right]. $$ Suppose that $A=\left[\begin{array}{ccc}{a_1} & {a_2} & {a_3} \end{array}\right]$, where $a_1,a_2,a_3$ are the columns of $A$. Now, we have $$AB=\left[\begin{array}{ccc}{a_1} & {a_2} & {a_3} \end{array}\right]\left[\begin{array}{ccc}{2} & {3} & {0} \\ {1} & {-1} & {1} \\ {-1} & {6} & {4}\end{array}\right]\\ =\left[\begin{array}{ccc}{2a_1+a_2-a_3} & {3a_1-a_2+6a_3} & {a_2+4a_3} \end{array}\right] .$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.