Linear Algebra: A Modern Introduction

Published by Cengage Learning
ISBN 10: 1285463242
ISBN 13: 978-1-28546-324-7

Chapter 3 - Matrices - 3.1 Matrix Operations - Exercises 3.1 - Page 153: 28

Answer

$b_{1} A_{1}+b_{2} A_{2}+b_{3} A_{3}=\left[\begin{array}{ccc}-7 & 3 & -1 \\ 6 & -1 & -4 \\ -11 & 6 & 4\end{array}\right]$

Work Step by Step

point the columns of the matrix $\mathrm{B}$ by $b_{1}, b_{2},$ and $b_{3}$ \[ A=\left[\begin{array}{ccc} 1 & 0 & -2 \\ -3 & 1 & 1 \\ 2 & 0 & -1 \end{array}\right], B=\left[\begin{array}{ccc} 2 & 3 & 0 \\ 1 & -1 & 1 \\ -1 & 6 & 4 \end{array}\right] \] and the rows of the matrix $\mathrm{A}$ by $A_{1}, A_{2},$ and $A_{3}$ \[ B A=\left[\begin{array}{lll} b_{1} & b_{2} & b_{3} \end{array}\right]\left[\begin{array}{l} A_{1} \\ A_{2} \\ A_{3} \end{array}\right] \] Calculate the outer products. \[ \begin{aligned} A_{1} &=\left[\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right]\left[\begin{array}{ccc} 1 & 0 & -2 \end{array}\right]=\left[\begin{array}{ccc} 2 & 0 & -4 \\ 1 & 0 & -2 \\ -1 & 0 & 2 \end{array}\right] \\ A_{2} &=\left[\begin{array}{c} 3 \\ -1 \\ 6 \end{array}\right]\left[\begin{array}{ccc} -3 & 1 & 1 \end{array}\right] \\ A_{3} &=\left[\begin{array}{c} 0 \\ 1 \end{array}\right]\left[\begin{array}{ccc} -9 & 3 & 3 \\ 3 & -1 & -1 \\ -18 & 6 & 6 \end{array}\right] \\ \left[\begin{array}{ccc} 0 & 0 & 0 \\ 2 & 0 & -1 \end{array}\right] \end{aligned} \] Add the three matrices to get the matrix BA.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.