University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 5 - Section 5.6 - Definite Integral Substitutions and the Area Between Curves - Exercises - Page 339: 98

Answer

$\displaystyle \frac{3}{2}\ln 2$

Work Step by Step

Area between curves $f(x)$ and $g(x)$, where $g(x)\geq f(x)$ on $[a,b], $ is $A=\displaystyle \int_{a}^{b}[g(x)-f(x)]dx$ On $[-\pi/4,0]$ the graph of tan is below the x-axis On $[0,\pi/3]$, it is above the x-axis. $A=\displaystyle \int_{-\pi/4}^{0}-\tan xdx+\int_{0}^{\pi/3}\tan xdx$ Because $\displaystyle \tan x=\frac{\sin x}{\cos x}$, $\displaystyle \int\tan xdx=\quad \displaystyle \left[\begin{array}{l} u=\cos x\\ du=-\sin x \end{array}\right]=\int u^{-1}du=\ln|u|+C=\ln|\cos x|+C$ So, $A=[\ln|\cos x|]_{-\pi/4}^{0}-[\ln|\cos x|]_{0}^{\pi/3}$ $=(\displaystyle \ln 1-\ln\frac{1}{\sqrt{2}})-(\ln\frac{1}{2}-\ln 1)$ $=0-(-\displaystyle \frac{1}{2}\ln 2)-(-1)\ln 2+0$ $=\displaystyle \frac{3}{2}\ln 2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.